

US009447387B2

(12) United States Patent

Jones et al.

(10) Patent No.: US 9,447,387 B2 (45) Date of Patent: Sep. 20, 2016

(54) MODIFIED FORMS OF *PSEUDOMONAS* EXOTOXIN A

(71) Applicant: Intrexon Corporation, Blacksburg, VA

(US)

(72) Inventors: Timothy David Jones, Babraham (GB);

Francis Joseph Carr, Balmedie (GB)

(73) Assignee: INTREXON CORPORATION,

Blacksburg, VA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

- (21) Appl. No.: 14/984,006
- (22) Filed: Dec. 30, 2015

(65) **Prior Publication Data**

US 2016/0108377 A1 Apr. 21, 2016

Related U.S. Application Data

- (63) Continuation of application No. 14/561,707, filed on Dec. 5, 2014, which is a continuation of application No. 13/604,173, filed on Sep. 5, 2012, now Pat. No. 8.932.586.
- (60) Provisional application No. 61/531,576, filed on Sep. 6, 2011.

(51)	Int. Cl.	
	C12N 9/10	(2006.01)
	C07K 16/28	(2006.01)
	C07K 14/21	(2006.01)
	A61K 39/00	(2006.01)
	A61K 39/02	(2006.01)
	A61K 38/00	(2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,545,985	A	10/1985	Pastan et al.
4,892,827	A	1/1990	Pastan et al.
5,458,878	A	10/1995	Pastan et al.
5,512,658	A	4/1996	Pastan et al.
5,602,095	A	2/1997	Pastan et al.
5,696,237		12/1997	FitzGerald et al.
5,705,156	A	1/1998	Pastan et al.
5,705,163	Α	1/1998	Pastan et al.
5,821,238	Α	10/1998	Pastan et al.
5,854,044	A	12/1998	Pastan et al.
5,863,745	Α	1/1999	Fitzgerald et al.
5,980,895	A	11/1999	Pastan et al.
5,981,726	A	11/1999	Pastan et al.

	6,051,405	Α	4/2000	FitzGerald et al.
	6,074,644	Α	6/2000	Pastan et al.
	6,426,075	Β1	7/2002	Fitzgerald et al.
	7,314,632	B1	1/2008	Fitzgerald
	7,750,136	B2	7/2010	Baker et al.
	8,092,809	B2	1/2012	FitzGerald
2	006/0051359	A1	3/2006	Pastan et al.
2	008/0125363	A1	5/2008	Filpula et al.
2	008/0193976	A1	8/2008	Harding
2	009/0142341	A1	6/2009	Pastan et al.
2	009/0305411	A1	12/2009	FitzGerald et al.
2	010/0215656	A1	8/2010	Pastan et al.
2	012/0263674	A1	10/2012	Pastan et al.

FOREIGN PATENT DOCUMENTS

WO	WO 88/02401 A1	4/1988
WO	WO 89/10971 A1	11/1989
WO	WO 90/12592 A1	11/1990
WO	WO 91/09949 A1	7/1991
WO	WO 91/09965 A1	7/1991
WO	WO 91/18018 A1	11/1991
WO	WO 91/18099 A1	11/1991
WO	WO 91/18100 A1	11/1991
WO	WO 92/09613 A1	6/1992
WO	WO 93/07286 A1	4/1993
WO	WO 93/25690 A1	12/1993
WO	WO 94/04689 A1	3/1994

(Continued)

OTHER PUBLICATIONS

Siegall et al., "Cell-Specific Toxicity of a Chimeric Protein Composed of Interleukin-6 and *Pseudomonas* Exotoxin (IL6-PE40) on Tumor Cells," *Mol. Cell. Biol.*, vol. 10, No. 6, pp. 2443-2447, American Society for Microbiology, Jun. 1990.

Pastan et al., "Recombinant Toxins for Cancer Treatment," *Science Mag.*, vol. 254, pp. 1173-1177, Nov. 22, 1991. Retrieved on Aug. 29, 2011 from www.sciencemag.org.

Siegall et al., "Analysis of Sequences in Domain II of *Pseudomonas* Exotoxin A Which Mediate Translocation," *Biochem.*, vol. 30, No. 29, pp. 7154-7159, American Chemical Society, 1991.

(Continued)

Primary Examiner — Amber D Steele
Assistant Examiner — Schuyler Milton
(74) Attorney, Agent, or Firm — Intrexon Corporation

(57) ABSTRACT

Pseudomonas exotoxin A or "PE" is a 66kD, highly potent, cytotoxic protein secreted by the bacterium Pseudomonas aeruginosa. Various forms of PE have been coupled to other proteins, such as antibodies, to generate therapeutically useful cytotoxin conjugates that selectively target cells of a desired phenotype (such as tumor cells). In the present invention, peptides spanning the sequence of an approximately 38kD form of Pseudomonas exotoxin A protein were analyzed for the presence of immunogenic CD4+ T cell epitopes. Six immunogenic T cell epitopes were identified. Residues were identified within each epitope for introduction of targeted amino acid substitutions to reduce or prevent immunogenic T-cell responses in PE molecules which may be administered to a heterologous host.

(56) References Cited

FOREIGN PATENT DOCUMENTS

WO	WO 97/13529 A1	4/1997
WO	WO 98/20135 A2	5/1998
WO	WO 98/41641 A1	9/1998
WO	WO 99/28471 A2	6/1999
WO	WO 02/40545 A2	5/2002
WO	WO 2004/050849 A2	6/2004
WO	WO 2006/065867 A2	6/2006
WO	WO 2007/016150 A2	2/2007
WO	WO 2009/032954 A1	3/2009
WO	WO 2011/032022 A1	3/2011
WO	WO 2012/154530 A1	11/2012
WO	WO 2012/170617 A1	12/2012
WO	WO 2013/040141 A1	3/2013

OTHER PUBLICATIONS

Theuer et al., "Immunotoxins Made with a Recombinant Form of *Pseudomonas* Exotoxin A That Do Not Require Proteolysis for Activity," *Cancer Res.*, vol. 53, pp. 340-347, American Assoc. for Cancer Research, Jan. 15, 1993. Retrieved on Jan. 9, 2014 from www.cancerres.aacjournals.org.

Benhar et al., "Pseudomonas Exotoxin A Mutants," The Journal of Biol. Chem., vol. 269, No. 18, pp. 13398-13404, May 6, 1994.

Thomas et al., "Abrogation of Head and Neck Squamous Cell Carcinoma Growth by Epidermal Growth Factor Receptor Ligand Fused to *Pseudomonas* Exotoxin Transforming Growth Factor α-PE38," *Clin. Cancer Res.*, vol. 10, pp. 7079-7087, American Assoc. for Cancer Research, Oct. 15, 2004. Retrieved on Aug. 29, 2012 from www.clincancerres.aacjournals.org.

Bang et al., "HA22 (R490A) Is a Recombinant Immunotoxin with Increased Antitumor Activity without an Increase in Animal Toxicity," *Clin. Cancer Res.*, vol. 11, pp. 1545-1550, American Assoc. for Cancer Research, Feb. 15, 2005. Retrieved on Jan. 9, 2014 from www.clincancerres.aacjournals.org.

Onda et al., "An immunotoxin with greatly reduced immunogenicity by identification and removal of B cell epitopes," *PNAS*, vol. 105, No. 32, pp. 11311-11316. Aug. 12, 2008.

105, No. 32, pp. 11311-11316. Aug. 12, 2008. Weldon et al., "A protease-resistant immunotoxin against CD22 with greatly increased activity against CLL and diminished animal toxicity," *Blood*, vol. 113, No. 16, pp. 3792-3800, Apr. 16, 2009. Retrieved on Jan. 9, 2014 from www.bloodjournal. hematologylibrary.org.

Baker et al., "Pre-Clinical Considerations in the Assessment of Immunogenicity for Protein Therapeutics," *Current Drug Safety*, vol. 5, No. 4, pp. 1-6, Bentham Science Publishers Ltd., Feb. 19, 2010.

Kreitman et al., "Antibody Fusion Proteins: Anti-CD22 Recombinant Immunotoxin Moxetumomab Pasudotox," *Clin. Cancer Res.*, vol. 17, No. 20, pp. 6398-6405, American Assoc. for Cancer Research, Oct. 15, 2011.

Onda et al., "Recombinant immunotoxin against B-cell malignancies with no immunogenicity in mice by removal of B-cell epitopes," *PNAS*, vol. 108, No. 14, pp. 5742-5747, Apr. 5, 2011. Pastan et al., "Immunotoxins with decreased immunogenicity and improved activity," *Leukemia & Lymphoma*, vol. 52, No. S2, pp. 87-90, Informa UK, Ltd., Jun. 2011. Retrieved on Jul. 11, 2011 from www.informahealthcare.com.

Weldon et al., "A guide to taming a toxin—recombinant immunotoxins constructed from *Pseudomonas* exotoxin A for the treatment of cancer," *The FEBS Journal*, vol. 278, pp. 4683-4700, FEBS, 2011.

Liu et al., "Recombinant immunotoxin engineered for low immunogenicity and antigenicity by identifying and silencing human B-cell epitopes," *PNAS*, vol. 109, No. 29, pp. 11782-11787, Jul. 17, 2012.

Hansen et al., "A Recombinant Immunotoxin Targeting CD22 With Low Immunogenicity, Low Nonspecific Toxicity, and High Antitumor Activity in Mice," *J Immunother*, vol. 33, No. 3, pp. 297-304, Lippincott Williams & Wilkins, Apr. 2010.

Hwang et al., "Functional Domains of Pseudomonas Exotoxin Identified by Deletion Analysis of the Gene Expressed in *E. Coli*," *Cell*, vol. 48, pp. 129-136, Cell Press, Jan. 16, 1987. Kreitman et al., "Recombinant immunotoxins and other therapies

Kreitman et al., "Recombinant immunotoxins and other therapies for relapsed/refractory hairy cell leukemia," *Leukemia & Lymphoma*, vol. 52, No. S2, pp. 82-86, Informa UK, Ltd., Jun. 2011. Shapira et al., "An Immunoconjugate of Anti-CD24 and *Pseudomonas* Exotoxin Selectively Kills Human Colorectal Tumors in Mice," *Gastroenterology*, vol. 140, No. 3, pp. 935-946, Mar. 2011

Chaudhary et al., "Pseudomonas exotoxin contains a specific sequence at the carboxyl terminus that is required for cytotoxicity," Proc. Natl. Acad. Sci. USA, vol. 87, pp. 308-312, Jan. 1990.

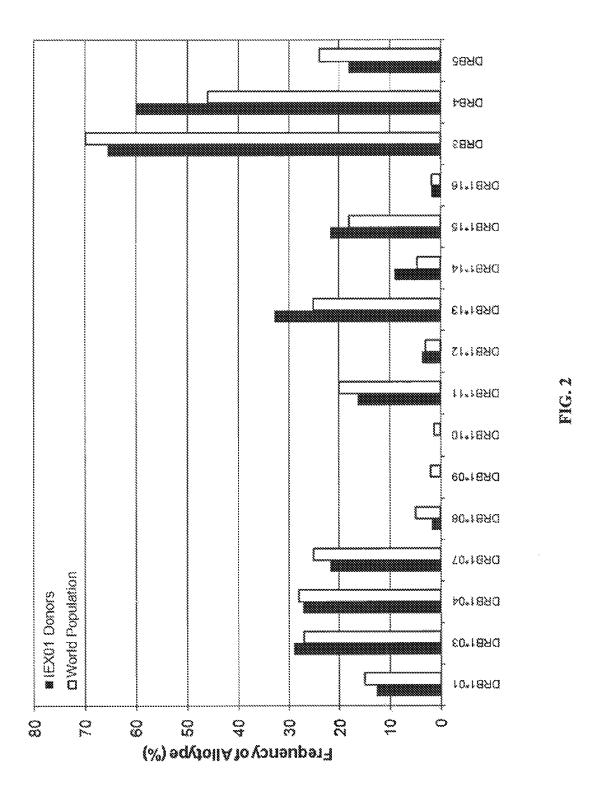
Hu et al., "Investigation of a plasmid containing a novel immunotoxin VEGF165-PE38 gene for antiangiogenic therapy in a malignant glioma model," *Int. J. Cancer*, vol. 127, pp. 2222-2229, 2010

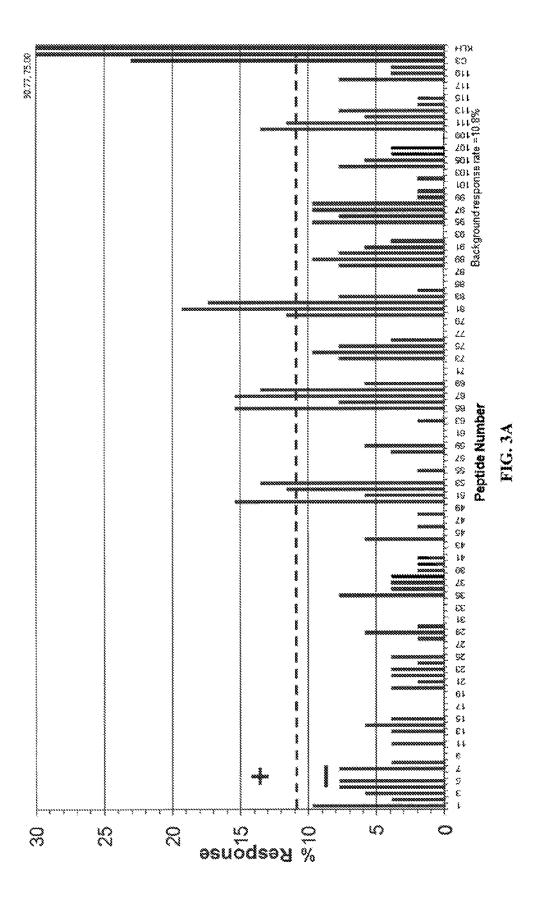
Itoi et al., "Targeting of Locus Ceruleus Noradrenergic Neurons Expressing Human Interleukin-2 Receptor α-Subunit in Transgenic Mice by a Recombinant Immunotoxin anti-Tac(Fv)-PE38: A Study for Exploring Noradrenergic Influence upon Anxiety-Like and Depression-Like Behaviors," *The Journal of Neuroscience*, vol. 31, No. 16, pp. 6132-6139, Society for Neuroscience, Apr. 20, 2011. Kuan et al., "Affinity-matured anti-glycoprotein NMB recombinant immunotoxins targeting malignant gliomas and melanomas," *Int J Cancer*, vol. 129, No. 1, pp. 111-121, International Union Against Cancer, Jul. 1, 2011.

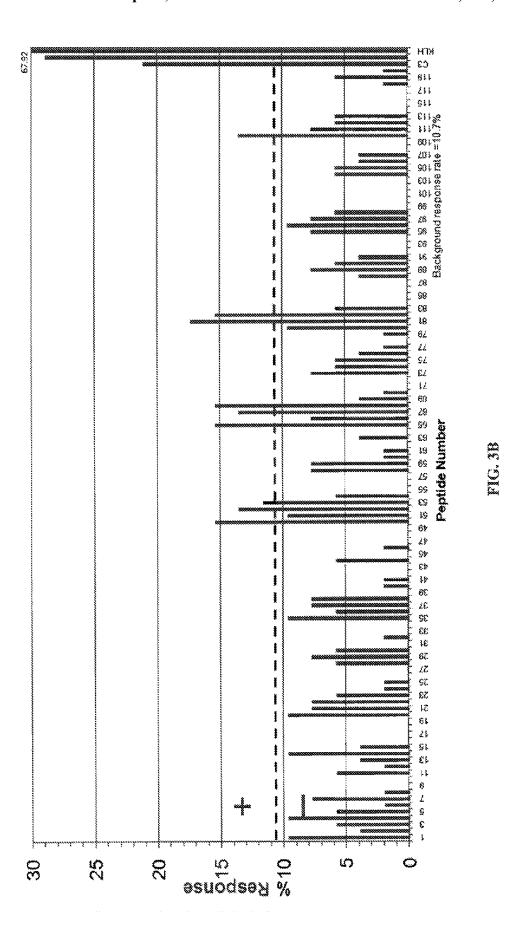
Mareeva et al., "A Novel Composite Immunotoxin That Suppresses Rabies Virus Production by the Infected Cells," *J Immunol Methods*, vol. 353, Nos. 1-2, pp. 1-18, Elsevier B.V., Feb. 28, 2010.

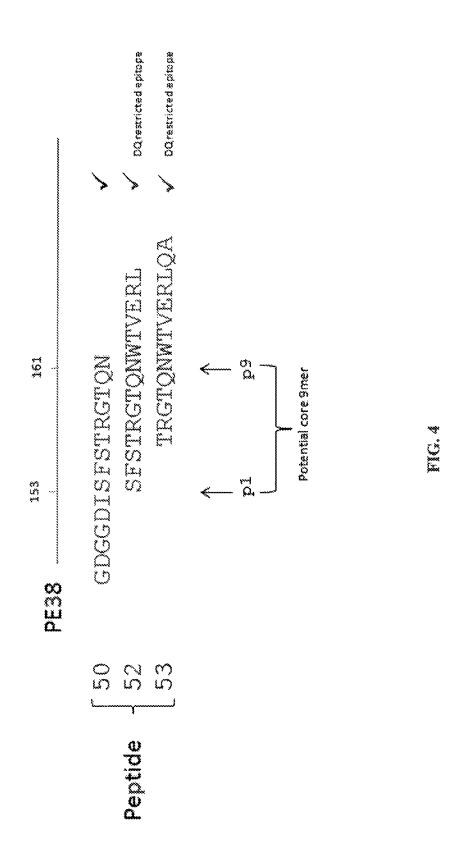
Nagata, S. and Pastan, I., "Removal of B cell epitopes as a practical approach for reducing the immunogenicity of foreign protein-based therapeutics," *Adv Drug Deliv Rev*, vol. 61, No. 11, pp. 977-985, Elsevier Science Publishers B.V., Sep. 30, 2009.

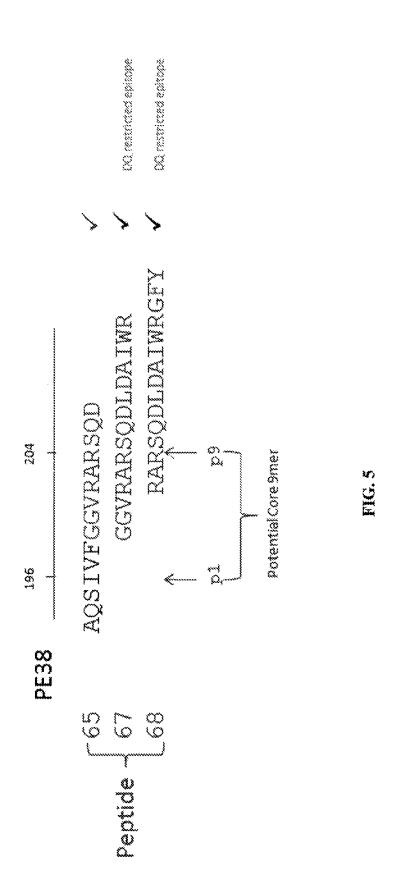
Seetharam et al., "Increased Cytotoxic Activity of *Pseudomonas* Exotoxin and Two Chimeric Toxins Ending in KDEL," *The Journal of Biological Chemistry*, vol. 266, No. 26, pp. 17376-17381, American Society for Biochemistry and Molecular Biology, Sep. 15, 1991. Stish et al., "Design and modification of EGF4KDEL 7Mut, a novel bispecific ligand-directed toxin, with decreased immunogenicity and potent anti-mesothelioma activity," *British Journal of Cancer*, vol. 101, Cancer Research UK, Sep. 15, 2009.

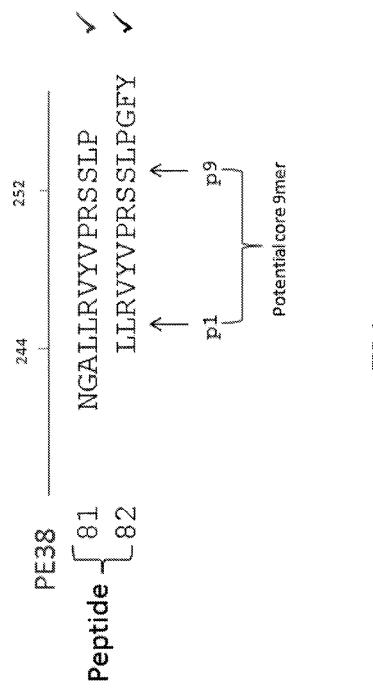

Theuer et al., "A Recombinant Form of *Pseudomonas* Exotoxin Directed at the Epidermal Growth Factor Receptor That Is Cytotoxic without Requiring Proteolytic Processing," *The Journal of Biological Chemistry*, vol. 267, No. 24, pp. 16872-16877, American Society for Biochemistry and Molecular Biology, Aug. 25, 1992.

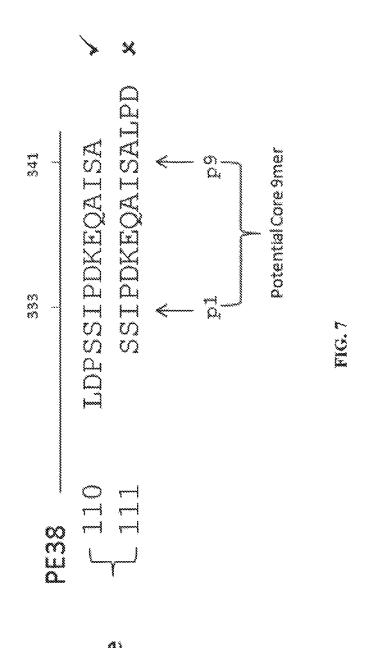

Zielinski et al., "Affitoxin—A Novel Recombinant, HER2-Specific, Anti-Cancer Agent for Targeted Therapy of HER2-Positive Tumors," *J Immunother*, vol. 32, No. 8, pp. 817-825, Lippincott Williams & Wilkins, Oct. 2009.

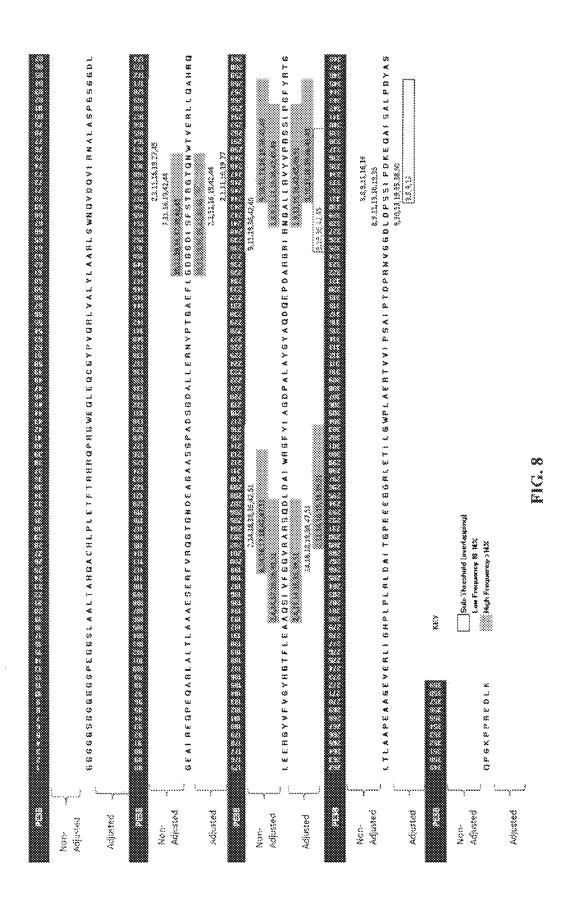

Fontana et al., "Secreted Bacterial Effectors That Inhibit Host Protein Synthesis Are Critical for Induction of the Innate Immune Response to Virulent *Legionella pneumophila*," *PLoS Pathog*, vol. 7, No. 2, Public Library of Science, Feb. 17, 2011.

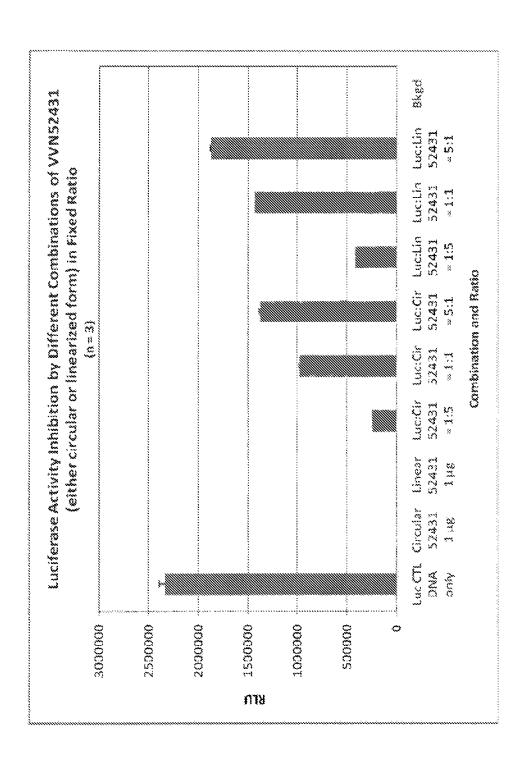

International Search Report, mailed Jan. 28, 2013, for International Application No. PCT/US2012/53868, filed Sep. 6, 2012.

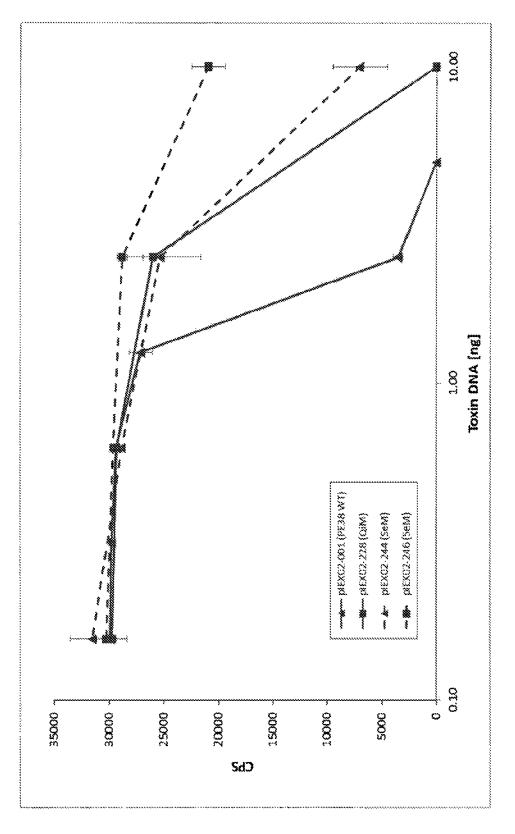

```
1
     AEEAFDLWNE CAKACVLDLK DGVRSSRMSV DPAIADTNGQ GVLHYSMVLE GGNDALKLAI
 61
     DNALSITSDG LTIRLEGGVE PNKPVRYSYT RQARGSWSLN WLVPIGHEKP SNIKVFIHEL
121
     NAGNQLSHMS PIYTIEMGDE LLAKLARDAT FFVRAHESNE MQPTLAISHA GVSVVMAQTQ
     PRREKRWSEW ASGKVLCILD PLDGVYNYLA QQRCNLDDTW EGKIYRVLAG NPAKHDLDIK
181
     PTVISHRLHF PE GGSLAALT AHQACHLPLE TFTRHRQPRG WEQLEQCGYP VQRLVALYLA
241
     ARLSWNQVDQ VIRNALASPG SGGDLGEAIR EQFEQARLAL TLAAAESERF VRQGTGNDEA
301
361
     GAAN advvsl tcpvaageca GPADSCDALL ERNYPTGAE F LCDGCDVSFS TRGTONWTYE
     RLLOAHROLE ERGYVFYGYH GTFLEAAOSI VFGGVRARSO DLDAIWRGFY IAGDPALAYG
421
     YAODOEPDAR GRIRNGALLR VYVPRSSLPG FYRTSLTLAA PEAAGEVERL IGHPLPLRLD
481
541
     AITGPEEEGG RLETILGWPL AERTVVIPSA IPTDFRNVGG DLDPSSIPDK EQAISALPDY
     ASOPGKPPRE DLK - 613
601
                              (SEQ ID NO:133)
Alternative carboxy-terminal tails:
609
     REDLK - 613 (SEQ ID NO: 135)
609 REDL - 612 (SEQ ID NO: 136)
609 KDEL - 612 (SEQ ID NO: 137)
Amino Acids (AA):
1-252 = Domain IA (cell binding domain; underlined)
253-364 = Domain II (cytosolic translocation; italics)
365-399 = Domain IB (dashed underling; SEQ ID NO:139)
365-380 = optional deletion of 365- ADVVSLTCPVAAGECA -380
(SEQ ID NO:138) (lowercase letters; dashed underling)
400-613 = Domain III (cytotoxic portion; bold, double-underline)
609-613 or 609-612 = Alternative carboxy-terminal tails
```

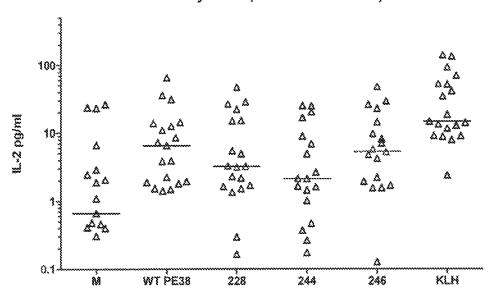












Š

IEX Day 6 IL-2 (bar shows median)

IEX Day 6 IL-6 (bar shows median)

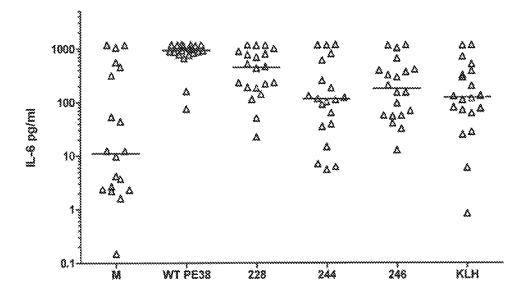


FIG. 11

MODIFIED FORMS OF *PSEUDOMONAS* EXOTOXIN A

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/561,707 filed Dec. 5, 2014, which is a continuation of U.S. application Ser. No. 13/604,173 filed Sep. 5, 2012 (now U.S. Pat. No. 8,932,586), which claims priority benefit of U.S. Application No. 61/531,576 filed Sep. 6, 2011.

REFERENCE TO RELATED APPLICATION

This application claims benefit of and priority based on ¹⁵ U.S. Provisional Patent Application Ser. No. 61/531,576, filed Sep. 6, 2011, the contents of which are herein incorporated by reference in their entirety.

NAMES OF THE PARTIES IN A JOINT RESEARCH AGREEMENT

The claimed invention was made pursuant to a joint research agreement, as defined in 35 U.S.C. §103 (c)(3), that was in effect on or before the date the claimed invention was made, and as a result of activities undertaken within the scope of the joint research agreement, by or on behalf of the Intrexon Corp. (Foster City, Calif., U.S.A.) and Antitope Ltd. (Cambridge, UK).

REFERENCE TO SEQUENCE LISTING SUBMITTED ELECTRONICALLY

A Sequence Listing is submitted electronically via EFS-Web as an ASCII formatted sequence listing in a file named "OT050-PCT_SEQLIST.txt", created on Sep. 4, 2012, and having a file size of 295,678 bytes which is filed concurrently with the present specification, claims, abstract and figures provided herewith. The sequence listing contained in this ASCII formatted document is part of the specification 40 and is herein incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

Immune System and T Cell Epitopes

Immune responses to biological therapeutic agents are wide ranging, and can be directed against agents that are both non-human and human in origin. These responses include those that elicit a weak clinical effect and those that limit efficacy which can occasionally result in morbidity or 50 even mortality in patients. In particular, serious complications can arise with the production of neutralizing antibodies, especially when they target recombinant self proteins and therefore have the potential to cross react with the patient's own endogenous protein (Lim, 2005). Problems 55 associated with immunogenicity to biologics (i.e., therapeutic medical products; such as, antibodies and recombinant proteins/polypeptides) have been reduced largely due to advances in molecular biology. There are, however, many recombinant protein biologics that are identical to endog- 60 enously expressed human sequences that still elicit potent neutralizing immune responses in patients (Hochuli, 1997; Schellekens et al, 1997; Namaka et al, 2006). The mechanism by which immunogenicity is triggered remains unclear although the tolerance to self proteins may be broken by a 65 number of factors linked to both the product and the patient (reviewed in Chester et a, 2006; Baker and Jones, 2007). For

2

the product, these include dose, frequency of administration, route, immunomodulatory capacity of the protein therapeutic, and the formulation (Jaber and Baker, 2007). For the patient, factors such as immune competence (i.e. whether the patient is receiving immunosuppressive treatment), patient's MHC haplotype and intrinsic tolerance to the protein therapeutic will influence immunogenicity. Regardless of how immunogenicity is triggered, one of the single most important factors in the development of an ensuing immune response is the presence of epitopes that are able to effectively stimulate a potent CD4+ T cell response (reviewed Baker and Jones, 2007).

T cells or T lymphocytes are a subset of white blood cells known as lymphocytes. (The abbreviation "T" in T cell is for "thymus" since this is the primary organ responsible for T cell maturation.) T cells play a central role in cell-mediated immunity. They can be distinguished from other types of lymphocytes (such as B cells and natural killer cells (NK cells)), by the presence of cell-surface proteins called T cell receptors (TCRs). Different types of T cells have also been identified; these can be distinguished based on the differing functions they serve (e.g., CD4+ T cells (a.k.a., T_H or T helper cells), CD8+ cytotoxic T cells (CTLs), memory T cells, regulatory T cells (T_{reg} cells), natural killer cells (NK cells), and gamma delta T cells ($\gamma\delta$ T cells)).

T helper (T_H) cells are so named because they aid other white blood cells in immunologic processes including, inter alia, assisting the maturation of B cells into plasma and B memory cells, and activation of cytotoxic T cells and macrophages. T_H cells are also known as CD4+ T cells because they express CD4 protein on the cell-surface. CD4+ T cells are activated when peptide antigens are presented by MHC class II molecules expressed on the surface of Antigen Presenting Cells (APCs). Once activated, CD4+ T cells divide rapidly and secrete chemokines that further assist in activating or regulating immune responses.

T cell epitope analysis is becoming increasingly important particularly in the pre-clinical analysis of biologics and may, in time, become a requirement for regulatory approval for clinical trials. To this end, a pre-clinical ex vivo T cell assay (EPISCREENTM) has been used to provide an effective technology for predicting T cell immunogenicity by identifying linear T cell epitopes present in protein sequences. Synthetic overlapping peptides typically of about 15 amino acids in length are tested against a cohort of community blood donors carefully selected based on MHC class II haplotypes to provide a quantitative analysis of T cell epitopes present in protein sequences. This technology has been used successfully to compare protein variants for the potential to induce an immune response in vivo. By providing a high degree of sensitivity along with high reproducibility, the EPISCREENTM assay allows an accurate preclinical assessment of the potential for immunogenicity of biologics. See, Baker & Carr, "Preclinical Considerations in the Assessment of Immunogenicity for Protein Therapeutics," Current Drug Safety 5(4):1-6 (2010); Bryson et al., "Prediction of Immunogenicity of Therapeutic Proteins: Validity of Computational Tools," Biodrugs 24(1)1-8 (2010); Holgate & Baker, "Circumventing Immunogenicity in the Development of Therapeutic Antibodies," IDrugs 12(4):233-237 (2009); Perry et al., "New Approaches to Prediction of Immune Responses to Therapeutic Proteins during Preclinical Development," Drugs R D 9(6):385-396 (2008); and, Baker & Jones, "Identification and removal of immunogenicity in therapeutic proteins," Current Opinion in Drug Discovery & Development 10(2):219-227 (2007). Pseudomonas Exotoxin A

Pseudomonas exotoxin A (PE-A) is a highly potent, 66 kD, cytotoxic protein secreted by the bacterium Pseudomonas aeruginosa. PE-A causes cell death by inhibiting protein synthesis in eukaryotic cells via inactivation of translation elongation factor 2 (EF-2), which is mediated by PE-A catalyzing ADP-ribosylation of EF-2 (i.e., transfer of an ADP ribosyl moiety onto EF-2). PE-A typically produces death by causing liver failure.

PE-A has at least three different structural domains responsible for various biological activities (FIG. 1). See e.g., Siegall et al., Biochemistry, vol. 30, pp. 7154-7159 (1991); Theuer et al., Jour. Biol. Chem., vol. 267, no. 24, pp. 16872-16877 (1992); and, U.S. Pat. No. 5,821,238. PE-A domain IA (amino acids 1-252 (see e.g., SEQ ID NO:133)) is responsible for cell binding. Domain II (amino acids 253-364 (see e.g., SEQ ID NO:133)) is responsible for translocation of PE-A into the cell cytosol. Domain III, the cytotoxic domain (amino acids 400-613 (see e.g., SEQ ID NO:133)), is responsible for ADP ribosylation of Elongation Factor 2 (EF2); which thereby inactivates EF2, subsequently causing cell death. Additionally, a function for domain IB (amino acids 365-399 (SEQ ID NO:139)) has not been established. Indeed, it has been reported that amino acids 365-380 (SEQ ID NO:138) within domain IB can be deleted without producing an identifiable a loss of function. See, 25 Siegall et al., *Biochemistry*, vol. 30, pp. 7154-7159 (1991).

It has also been reported that PE-A may comprise any one of at least three different carboxy-terminal tails (FIG. 1); these appear to be essential for maintaining or recycling proteins into the endoplasmic reticulum. See, Theuer et al., *J. Biol. Chem.*, vol. 267, no. 24, pp. 16872-16877 (1992); Chaudhary et al., *Proc. Natl. Acad. Sci. USA*, vol. 87, pp. 308-312 (1990); and, Seetharam et al., *Jour. Biol. Chem.*, vol. 266, 17376-17381 (1991). In particular, in correspondence with the exemplary sequence shown in FIG. 1 (SEQ ID NO: 133) these alternative carboxy-terminal tails comprise amino acid sequences:

```
609-REDLK-613 (SEQ ID NO: 135);
609-REDL-612 (SEQ ID NO: 136);
and
609-KDEL-612 (SEQ ID NO: 137).
```

Variants of PE-A, modified to lack the cell binding 45 domain but coupled to heterologous cell-specific targeting molecules (e.g., antibodies), have been shown to have reduced levels of non-specific toxicity. See e.g., U.S. Pat. No. 4,892,827.

Various forms of PE-A (e.g., truncated/deletion forms 50 with molecular weights of ~37 kD, 38 kD, 40 kD, et cetera) have been combined with a number of growth factors, antibodies, and other proteins to generate cytotoxins which selectively target cells of a desired phenotype. See, for example:

- Kreitman et al., "Recombinant immunotoxins and other therapies for relapsed/refractory hairy cell leukemia," *Leuk. Lymphoma*, Suppl. 2:82-86 (June-2011);
- Itoi et al., "Targeting of locus ceruleus noradrenergic neurons expressing human interleukin-2 receptor 60 α-subunit in transgenic mice by a recombinant immunotoxin anti-Tac(Fv)-PE38," *J. Neurosci.*, 31(16): 6132-6139 (April-2011);
- Shapira et al., "An immunoconjugate of anti-CD24 and *Pseudomonas* exotoxin selectively kills human colorectal tumors in mice," *Gastroenterology*, 140(3):935-946 (March-2011);

4

- Kuan et al., "Affinity-matured anti-glycoprotein NMB recombinant immunotoxins targeting malignant gliomas and melanomas," Int. J. Cancer, 129(1):111-21 (July-2011);
- Hu et al., "Investigation of a plasmid containing a novel immunotoxin VEGF165-PE38 gene for antiangiogenic therapy in a malignant glioma model," *Int. J. Cancer*, 127(9):2222-2229 (November-2010);
- Mareeva et al., "A novel composite immunotoxin that suppresses rabies virus production by the infected cells," *J. Immunol. Methods*, 353(1-2):78-86 (February-2010);
- Zielinski et al., "Affitoxin—a novel recombinant, HER2-specific, anticancer agent for targeted therapy of HER2-positive tumors," J. Immunother. 32(8):817-825 (October-2009);
- Theuer et al., *J. Biol. Chem.*, 267(24):16872-16877 (1992);
- Pastan et al., "Recombinant toxins for cancer treatment," Science, 254:1173-1177 (1991);
- U.S. Pat. No. 5,821,238 ("Recombinant *Pseudomonas* Exotoxins with Increased Activity"); and
- U.S. Pat. No. 4,892,827 ("Recombinant *Pseudomonas* Exotoxins: Construction of an Active Immunotoxin with Low Side Effects").

A significant disadvantage in using PE-A for treatment of disease, however, is that it is a foreign (non-self) protein being introduced into a heterologous host (e.g., a human).

Introduction of non-self proteins into heterologous hosts commonly elicits host immune reactions, such as the generation of antibodies ("neutralizing antibodies") or immune cell reactions (e.g., cytotoxic T cell responses) which are directed at eliminating the non-self protein (i.e., PE-A). Accordingly, it would be advantageous if elements of PE-A (PE-A epitopes) which are recognized and targeted as "non-self" could be removed prior to use of this molecule as a therapeutic agent.

40 Deimmunization of PE

Some investigators have previously attempted to identify and remove immunogenic determinants from PE-A (i.e., to "deimmunize" PE-A). See, for example:

- Pastan et al., "Immunotoxins with decreased immunogenicity and improved activity," Leukemia and Lymphoma, 52(S2):87-90 (June-2011);
- Onda et al., "Recombinant immunotoxin against B-cell malignancies with no immunogenicity in mice by removal of B-cell epitopes," *Proc. Natl. Acad. Sci. USA*, 108(14):5742-5747 (April-2011);
- Hansen et al., "A recombinant immunotoxin targeting CD22 with low immunogenicity, low nonspecific toxicity, and high antitumor activity in mice," *J. Immunother.* 33(3):297-304 (April-2011);
- Stish et al., "Design and modification of EGF4KDEL 7Mut, a novel bispecific ligand-directed toxin, with decreased immunogenicity and potent anti-mesothelioma activity," *Br. J. Cancer*, 101(7):1114-1123 (October-2009);
- Nagata et al., "Removal of B cell epitopes as a practical approach for reducing the immunogenicity of foreign protein-based therapeutics," *Adv. Drug Deliv. Rev.*, 61(11):977-985 (September-2009);
- Onda et al., "An immunotoxin with greatly reduced immunogenicity by identification and removal of B cell epitopes," *Proc. Natl. Acad. Sci. USA*, 105(32):11311-11316 (August-2008); and

Pastan et al, "Mutated *Pseudomonas* Exotoxins with Reduced Antigenicity," U.S. Patent Application No. 2009/0142341.

Despite progress in the area of deimmunization of PE-A, there remains a need for the development of optimized, less immunogenic or non-immunogenic, biologically active forms of this useful cytotoxin. The invention described herein addresses this need.

BRIEF SUMMARY OF THE INVENTION

Peptides spanning the sequence of an approximately 38 kD (predicted molecular weight) form of Pseudomonas exotoxin A protein (SEQ ID NO:1) were analyzed for the presence of immunogenic CD4+ T cell epitopes. A total of 15 120 overlapping 15mer peptides spanning this sequence (SEQ ID NO: 1), but also including an amino terminal (Gly_{x5}-Ser)_{x2} linker sequence (SEQ ID NO:3) to produce a 359 amino acid Gly-Ser-PE38 polypeptide sequence (SEQ ID NO:2), were tested against a cohort of healthy human 20 donors. CD4+ T cell responses against individual peptides were measured via proliferation assays. Assay data was used to compile a T cell epitope map of the PE38 sequence. Six immunogenic T cell epitopes were identified. Residues were then identified within each of these epitopes for use in 25 targeted amino acid substitutions to reduce or prevent PE38induced immunogenicity. Reduction or prevention of PE immunogenicity should allow for multiple therapeutic administrations of cytotoxic PE for use, for example, in the targeted destruction of cancer cells in vivo (such as when 30 administered as an immunoconjugate or cell-surface targeted fusion protein).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1. Example of a *Pseudomonas* exotoxin A protein and domains which may be contained therein.

FIG. 2. Comparison of the frequency of donor allotypes expressed in the IEX01 study cohort (n=52) and the world population.

FIGS. 3A & 3B. CD4+ T cell epitope map of IEX01 PE38 sequence using overlapping 15mer peptides tested against 52 healthy donors. The non-adjusted (FIG. 3A) and adjusted (FIG. 3B) proliferation assay data for the PE38 sequence is shown. Peptides inducing positive (SI≥2.00, p<0.05, including borderline responses) T cell proliferation responses at a frequency above the background response rate (mean positive T cell responses plus SD) contain T cell epitopes (dotted line indicates the background response threshold). KLH induced positive responses in (SI≥2.00, p<0.05) 75% of 50 (non-adjusted) donors.

FIG. 4. Alignment of peptides 50, 52 and 53 showing the predicted HLA-DR core 9mer binding register. Predicted core 9mer sequences are bracketed by p1 and p9 anchor residues. Peptides that stimulated positive T cell responses 55 in the adjusted data set are shown. Amino acid numbering (residues 153 and 161) correspond to SEQ ID NO:2 (PE38 of SEQ ID NO:1 plus amino-terminal linker GGGGGSGGGGGS (SEQ ID NO:3)).

FIG. 5. Alignment of peptides 65, 67 and 68 showing one 60 predicted HLA-DR core 9mer binding register. Predicted core 9mer sequences are bracketed by p1 and p9 anchor residues. Peptides that stimulated positive T cell responses in the adjusted data set are shown. Amino acid numbering (residues 196 and 204) correspond to SEQ ID NO:2 (PE38 65 of SEQ ID NO:1 plus amino-terminal linker GGGGGGGGGGGG (SEQ ID NO:3)).

6

FIG. **6**. Alignment of peptides 81 and 82 showing the potential HLA-DR core 9mer binding register. Predicted core 9mer sequences are bracketed by p1 and p9 anchor residues. Peptides that stimulated positive T cell responses in the adjusted data set are shown. Amino acid numbering (residues 244 and 252) correspond to SEQ ID NO:2 (PE38 of SEQ ID NO:1 plus amino-terminal linker GGGGGGGGGGGG (SEQ ID NO:3)).

FIG. 7. Alignment of peptides 110 and 111 showing a predicted HLA-DR core 9mer binding register. Predicted core 9mer sequences are bracketed by p1 and p9 anchor residues. Peptides that stimulated positive T cell responses in the adjusted data set are shown. Amino acid numbering (residues 333 and 341) correspond to SEQ ID NO:2 (PE38 of SEQ ID NO:1 plus amino-terminal linker GGGGGSGGGGGS (SEQ ID NO:3)).

FIG. 8. Position of CD4+ T cell epitopes within the PE38 sequence. T cell epitopes identified by EPISCREEN™ T cell epitope mapping are shown as shaded bars above the sequence. The frequency of donors responding (SI≥2.00, p<0.05) to each epitope are indicated by the shading of the bars; light grey <10%, mid grey 10-14%; dark grey >=14%. Numbers assigned to each individual donor (that responded to a corresponding epitope) are included within each shaded bar.

FIG. 9. In vivo Transcription/Translation (IVTT) shows that circular plasmid expression vector encoding PE38-IL2 fusion protein was slightly better at inhibiting Luciferase protein synthesis compared to linearized plasmid encoding the same PE38-IL2 fusion protein.

FIG. 10. Luciferase activity measure in counts per second (CPS) in In vitro Transcription/Translation (IVTT) assays of genes encoding either Wild-Type (WT) PE or encoding amino acid substituted PE.

FIG. 11. Analysis of production of cytokines IL-2 and IL-6 stimulated in response to expression of genes encoding either Wild-Type (WT) PE or encoding amino acid substituted PE.

DETAILED DESCRIPTION OF THE INVENTION

I. Definitions and Descriptions

Unless specifically indicated otherwise, as used herein the term "PE" or "PE-A" is intended to indicate a polypeptide comprising a cytotoxic polypeptide sequence derived from a wild-type or naturally occurring form of Pseudomonas aeruginosa exotoxin A protein. In addition to cytotoxic polypeptide sequences, PE polypeptides may comprise additional naturally occurring or heterologous polypeptide sequences. Additional naturally occurring polypeptide sequences may include sequences such as are found in full-length *Pseudomonas* exotoxin A protein, for example, amino acid sequences responsible for cytosolic translocation and cell-specific targeting (as discussed further herein)). Additional heterologous polypeptide sequences may include sequences with which at least a PE cytotoxic polypeptide is fused to impart additional functions or properties. (For example, a PE cytotoxic polypeptide may be fused to antigen binding polypeptide sequences such as an scFv antibody.) Examples of sequences comprising a cytotoxic portion of PE can be found in SEQ ID NO:1 and SEQ ID NO:4 spanning amino acid residues Phe-134 to Lys-347. Examples of sequences comprising a cytotoxic portion of PE can also be found in SEQ ID NO:133 and SEQ ID NO:134 spanning amino acid residues Phe-400 to Lys-613.

As used herein in reference to PE, unless indicated otherwise, a "cytotoxic polypeptide" or "cytotoxic polypeptide sequence" is intended to indicate a polypeptide (or portion thereof) which is capable of inactivating translation elongation factor 2 (EF-2), mediating ADP-ribosylation of ⁵ EF-2, inhibiting protein synthesis, or inducing cell death. For example, it has been demonstrated that PE domain III, comprised of amino acid residues 400-613 of SEQ ID NO:133, is sufficient to mediate ADP-ribosylation of EF-2 and thereby cause cell death. See, Theuer et al., *J. Biol. Chem.*, vol. 267, no. 24, pp. 16872-16877 (1992) and Hwang et al., *Cell. vol.* 48, pp. 129-136 (1987).

Cytotoxic polypeptide sequences in the present invention may also comprise alternative carboxy-terminal sequences.

See, Theuer et al., Chaudhary et al. and, Seetharam et al. In particular embodiments, examples of carboxy-terminal tails of PE38 in the present invention may comprise sequences as shown in FIG. 1 (SEQ ID NO:133). Hence, exemplary alternative carboxy-terminal tails may comprise amino acid 20 sequences:

```
609-REDLK-613
(SEQ ID NO: 135; numbers 609-613 correspond to SEQ ID NO: 133)

609-REDL-612
(SEQ ID NO: 136; numbers 609-612 correspond to SEQ ID NO: 133); and

609-KDEL-612
(SEQ ID NO: 137; numbers 609-612 correspond to SEO ID NO: 137; numbers 609-612 correspond to SEO ID NO: 133).
```

Unless specifically indicated otherwise, as used herein the term "PE38" is intended to indicate a *Pseudomonas aerugi-* 35 *nosa* exotoxin A (PE (or PE-A)) molecule comprising an amino acid sequence as shown in SEQ ID NO: 1. The amino acid sequence used to generate peptide sequences referenced in the Examples is shown in SEQ ID NO:2. SEQ ID NO:2 comprises an amino terminal GGGGGSGGGGGS linker 40 sequence (SEQ ID NO:3) fused to the PE38 amino acid sequence of SEQ ID NO:1. A variant form of PE38 is shown in SEQ ID NO:4. SEQ ID NO:4 differs from SEQ ID NO:1 by comprising a Ser-to-Asn change at position 114, a Ile-to-Val change at position 141, and a Gly-to-Ser change 45 at position 249.

As used herein, unless specifically stated otherwise, "biological activity" in reference to Pseudomonas exotoxin A (PE-A), PE or PE38 is intended to indicate at least one of the biological activities exhibited by naturally occurring forms 50 of the Pseudomonas aeruginosa exotoxin A molecule. These activities include, for example, cell killing or cell cytotoxic activity (a.k.a., cell cytotoxicity), inactivation of translation elongation factor EF-2, ADP-ribosylation of EF-2, and inhibition of protein synthesis. The biological activity of PE and 55 PE38 polypeptides (and modified forms thereof; e.g., PE and PE38 amino acid substituted variants and fusion proteins) can be measured using assays and experiments which are well-known and routinely used by those skilled in the art. Examples of some of these assays and experiments are 60 further described and referenced herein, without limitation, in the Examples sections included herein.

As used herein, the term "having *Pseudomonas* exotoxin A (PE-A) biological activity" (or "PE biological activity") is intended to indicate molecules exhibiting about 5% or more 65 of at least one biological activity compared to a corresponding wild-type, naturally occurring, or non-amino acid sub-

8

stituted form of PE or PE-A. In some embodiments, molecules "having Pseudomonas exotoxin A biological activity" (or "PE biological activity") exhibit 5% or more, about 10% or more, 10% or more, about 15% or more, 15% or more, about 20% or more, 20% or more, about 25% or more, 25% or more, about 30% or more, 30% or more, about 35% or more, 35% or more, about 40% or more, 40% or more, about 45% or more, 45% or more, about 50% or more, 50% or more, about 60% or more, 60% or more, about 70% or more, 70% or more, about 75% or more, 75% or more, about 80% or more, 80% or more, about 85% or more, 85% or more, about 90% or more, 90% or more, about 95% or more, 95% or more, about 100%, or 100% of at least one biological activity compared to a corresponding wild-type, naturally occurring, or non-amino acid substituted forms of PE or PE-A.

As used herein, the term "wild-type" Pseudomonas exotoxin A (PE-A) (or "wild-type" PE) biological activity is intended to indicate at least one or more biological activities exhibited by naturally occurring forms of the *Pseudomonas* exotoxin A (PE-A) or PE polypeptides. These include, for example, without limitation, activities such as cell killing or cell cytotoxic activity (a.k.a., cell cytotoxicity), inactivation of translation elongation factor EF-2, ADP-ribosylation of 25 EF-2, and inhibition of protein synthesis. Two examples, without limitation, of polypeptide sequences representing "wild-type" or non-amino acid substituted forms of PE-A are shown in SEQ ID NO:133 and SEQ ID NO:134. Two examples, without limitation, of polypeptide sequences rep-30 resenting "wild-type" or non-amino acid substituted forms of PE are shown in SEQ ID NO:1 (PE38) and SEQ ID NO:4 (variant of PE38).

As used or claimed herein the term "a" or "an" in reference to the subsequent recited entity refers to one or more of that entity; for example, "a PE38 antibody" or "a polynucleotide encoding PE38" is understood to indicate one or more PE38 antibody molecules and one or more polynucleotides encoding PE38, not a single PE38 antibody molecule nor a single polynucleotide molecule encoding PE38, respectively. As such, the terms "a" (or "an"), "one or more," and "at least one" can be used interchangeably herein.

Likewise, as used herein, the term "polypeptide" is intended to encompass a singular "polypeptide" as well as plural "polypeptides," and refers to a molecule composed of monomers (amino acids) linked by amide bonds (also known as peptide bonds). The term "polypeptide" refers to any chain or chains of two or more amino acids, and does not refer to a specific length of the product. Thus, peptides, dipeptides, tripeptides, oligopeptides, "protein," "amino acid chain," or any other term used to refer to a chain or chains of two or more amino acids, are included within the definition of "polypeptide," and the term "polypeptide" may be used instead of, or interchangeably with any of these terms. The term "polypeptide" is also intended to refer to the products of post-expression modifications of the polypeptide, such as, but without limitation glycosylation, acetylation, phosphorylation, amidation, et cetera. A "polypeptide" unless specifically described otherwise herein, may be derived from a natural biological source or produced by recombinant technology, but is not necessarily translated from a designated nucleic acid sequence. It may be generated in any manner, including by chemical synthesis.

Polypeptides may have a defined three-dimensional structure, although they do not necessarily have such structure. Polypeptides with a defined three-dimensional structure may be referred to as "folded" or having a "tertiary" structure.

Polypeptides not configured into a three-dimensional structure, are referred to as unfolded. As used herein, the term glycoprotein refers to a protein coupled to at least one carbohydrate moiety attached to the protein via a covalent bond.

The term "isolated" is intended to indicate a biological component no longer in its naturally occurring milieu. For example, an "isolated polypeptide" or "isolated polynucleotide" is intended to indicate a polypeptide or polynucleotide, respectively, which has been removed from its naturally occurring milieu and which may have been inserted within a non-naturally occurring milieu. By way of example, this would include, without limitation, a polynucleotide which has been removed from a naturally occurring location within a host genome, and subsequently inserted, for example, into an expression vector or inserted into a new host genome location or into the genome of a heterologous host organism. The "isolation" of a polypeptide or polynucleotide, as used herein, requires no particular level of 20 purification. For example, recombinantly produced polypeptides expressed in host cells are considered isolated for purposes of the invention, as are native or recombinant polypeptides which have been separated, fractionated, or partially or substantially purified by any suitable technique. 25

Polypeptide embodiments also include fragments, derivatives, analogs, variants and fusion proteins; preferably but not necessarily wherein such embodiments retain one or more biological activities associated with a corresponding full-length or naturally occurring polypeptide. Fragments 30 include proteolytic fragments, deletion fragments, and fragments encoded by synthetically or recombinantly produced polynucleotides. Variants may occur naturally or be nonnaturally occurring. Non-naturally occurring variants may be produced using art-known mutagenesis techniques. Vari- 35 ant polypeptides may comprise conservative or non-conservative amino acid substitutions, deletions, or additions. Derivatives include, but are not limited to, polypeptides which contain one or more non-naturally occurring amino acids, non-standard amino acids, and amino acid analogs. 40 Polypeptide embodiments may comprise amino acid sequences which are at least 60% identical, at least 70% identical, at least 80% identical, at least 85% identical, at least 90% identical, at least 95% identical, at least 97% identical, at least 98% identical, or at least 99% identical to 45 SEQ ID NO: 1.

Unless specifically defined otherwise, the term "polynucleotide" is intended to indicate nucleic acid molecules or constructs as routinely used and understood by those of skill in the art. For example, nucleic acids include, but are not 50 limited to, molecules such as messenger RNA (mRNA), plasmid DNA (pDNA), complementary DNA (cDNA), and genomic DNA (gDNA). A polynucleotide may comprise a conventional phosphodiester bond or a non-conventional bond (e.g., an amide bond, such as found in peptide nucleic 55 acids (PNA)). The terms "polynucleotide" and "nucleic acid" are intended to include embodiments wherein any one or more sequences of polynucleotide or nucleic acid segments are contained, or comprised within, a larger polynucleotide or nucleic acid sequence. For example, but with- 60 out limitation, and unless stated otherwise to the contrary herein, reference to a nucleic acid such as "a polynucleotide encoding PE38" is intended to include nucleic acids comprising "a polynucleotide encoding PE38" wherein such polynucleotide may also be part of a larger nucleic acid or 65 polynucleotide, such as an expression vector or a polynucleotide/nucleic acid encoding an PE fusion protein.

10

An "isolated" nucleic acid or polynucleotide is intended a nucleic acid molecule, DNA or RNA, which has been removed from its native environment. For example, a recombinant polynucleotide encoding an antibody contained in a vector is considered isolated for the purposes of the present invention. Further examples of an isolated polynucleotide include recombinant polynucleotides maintained in heterologous host cells or purified (partially or substantially) polynucleotides in solution. Isolated RNA molecules include in vivo or in vitro synthesized RNA molecules; including synthetically produced molecules.

As used herein, a "coding region" is a portion of nucleic acid containing codons which may be translated into amino acids, although "stop codons" (TAG, TGA, or TAA) are not translated into an amino acids, but may also be considered to be part of a coding region. Unless stated otherwise herein, promoters, ribosome binding sites, transcriptional terminators, introns, and the like, are not considered part of a coding region. Two or more coding regions of the present invention can be present in a single polynucleotide construct, e.g., on a single vector, or in separate polynucleotide constructs, e.g., on separate (different) vectors. Furthermore, any vector may contain a single coding region, or may comprise two or more coding regions, e.g., a single vector may separately encode an immunoglobulin heavy chain variable region and an immunoglobulin light chain variable region. In addition, a vector, polynucleotide, or nucleic acid embodiments may encode heterologous coding regions, either fused or unfused to a nucleic acid encoding a different heterologous polypeptide. Heterologous coding regions include without limitation specialized elements or motifs, such as a secretory signal peptide or a heterologous functional domains.

In certain embodiments, the polynucleotide or nucleic acid is DNA. In the case of DNA, a polynucleotide comprising a nucleic acid which encodes a polypeptide normally may include a promoter and/or other transcription or translation control elements operably associated with one or more coding regions. An operable association is when a coding region for a gene product, e.g., a polypeptide, is associated with one or more regulatory sequences in such a way as to place expression of the gene product under the influence or control of the regulatory sequence(s). Two DNA fragments (such as a polypeptide coding region and a promoter associated therewith) are "operably associated" if induction of promoter function results in the transcription of mRNA encoding the desired gene product. Thus, a promoter region would be operably associated with a nucleic acid encoding a polypeptide if the promoter was capable of effecting transcription of that nucleic acid. Other transcription control elements, besides a promoter, include for example, but without limitation, enhancers, operators, repressors, and transcription termination signals, can be operably associated with the polynucleotide to direct cell-specific transcription. Suitable promoters and other transcription control regions are disclosed herein.

The terms "antibody" and "immunoglobulin" may be used interchangeably herein. An antibody or immunoglobulin comprises at least the antigen-binding elements (e.g., complementarity determining regions or CDRs) of the variable domain of a heavy chain and/or of the variable domain of a light chain. Basic immunoglobulin structures in vertebrate systems are well understood by those of skill in the art. See, e.g., Harlow & Lane, Using Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 1999 (ISBN 0879695447)); see also, Harlow & Lane, Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988). The term "immunoglobulin" or "antibody"

comprises various broad classes of antibody molecules, such as, but without limitation, IgG, IgM, IgA IgG, and IgE classes of antibodies; as well as antibody subclasses (isotypes), such as, IgG1, IgG2, IgG3, IgG4, IgA1, et cetera.

11

Antibodies or antigen-binding fragments, variants, or 5 derivatives thereof of the invention include, but are not limited to, polyclonal, monoclonal, multispecific, human, humanized, primatized, or chimeric antibodies, single chain antibodies, epitope-binding fragments, e.g., Fab, Fab' and F(ab')₂, Fd, Fvs, single-chain Fvs (scFv), single-chain antibodies, disulfide-linked Fvs (sdFv), fragments comprising either a VL or VH domain, fragments produced by a Fab expression library, and anti-idiotypic (anti-Id) antibodies.

As used herein, an "epitope" or "antigenic determinant" is the part of a polypeptide, antigen, or molecule that is 15 recognized by the immune system, specifically by antibodies, B cells, or T cells. Epitopes of polypeptide antigens may function as conformational epitopes or linear epitopes. A conformational epitope is comprised of non-linear sections of a target molecule (such as that formed via the tertiary 20 structure of a folded polypeptide). In contrast, amino acids that make up a linear epitope may be comprised of a continuous sequence of amino acids or may be comprised only of particular amino acid residues critical to antibody/B cell/T cell binding.

By "specifically binds," it is generally meant that an antibody binds to an epitope via its antigen binding domain, and that the binding entails some complementarity between the antigen binding domain and the epitope. According to this definition, an antibody is said to "specifically bind" to 30 an epitope when it binds to that epitope, via its antigen binding domain more readily than it would bind to a random, unrelated epitope. The term "specificity" may be used herein to qualify the relative affinity by which a certain antibody binds to a certain epitope. For example, antibody "A" may 35 be deemed to have a higher specificity for a given epitope than antibody "B," or antibody "A" may be said to bind to epitope "C" with a higher specificity than it has for related epitope "D."

By "preferentially binds," it is meant that the antibody 40 specifically binds to an epitope more readily than it would bind to a related, similar, homologous, or analogous epitope. Thus, an antibody which "preferentially binds" to a given epitope would more likely bind to that epitope than to a related epitope, even though such an antibody may cross-45 react with the related epitope.

An antibody is said to competitively inhibit binding of a reference antibody to a given epitope if it preferentially binds to that epitope to the extent that it blocks, to some degree, binding of the reference antibody to the epitope. 50 Competitive inhibition may be determined by any method known in the art, for example, competition ELISA assays. An antibody may be said to competitively inhibit binding of the reference antibody to a given epitope by at least 90%, at least 80%, at least 70%, at least 60%, or at least 50%.

As used herein, the term "affinity" refers to a measure of the strength of the binding of an individual epitope with the CDR of an immunoglobulin molecule. See, e.g., Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988) at pages 27-28. As used 60 herein, the term "avidity" refers to the overall stability of the complex between a population of immunoglobulins and an antigen, that is, the functional combining strength of an immunoglobulin mixture with the antigen. See, e.g., Harlow at pages 29-34. Avidity is related to both the affinity of 65 individual immunoglobulin molecules in the population with specific epitopes, and also the valencies of the immu-

noglobulins and the antigen. For example, the interaction between a bivalent monoclonal antibody and an antigen with a highly repeating epitope structure, such as a polymer, would be one of high avidity.

12

The term "cross-reactivity" refers to the ability of an antibody, specific for one antigen, to react with a second antigen; a measure of relatedness between two different antigenic substances. Thus, an antibody is cross reactive if it binds to an epitope other than the one that induced its formation. The cross reactive epitope generally contains many of the same complementary structural features as the inducing epitope, and in some cases, may actually fit better than the original.

As used herein, the terms "linked," "fused" or "fusion" may be used interchangeably. These terms refer to the joining together of two more elements or components, by whatever means including chemical conjugation or recombinant means. An "in-frame fusion" refers to the joining of two or more polynucleotide open reading frames (ORFs) to form a continuous longer ORF, in a manner that maintains the correct translational reading frame of the original ORFs. Thus, a recombinant fusion protein is a single protein containing two ore more segments that correspond to polypeptides encoded by the original ORFs (which segments are not normally so joined in nature.) Although the reading frame is thus made continuous throughout the fused segments, the segments may be physically or spatially separated by, for example, in-frame linker sequence. For example, polynucleotides encoding the CDRs of an immunoglobulin variable region may be fused, in-frame, but be separated by a polynucleotide encoding at least one immunoglobulin framework region or additional CDR regions, as long as the "fused" CDRs are co-translated as part of a continuous polypeptide.

In the context of polypeptides, a "linear sequence" or a "sequence" is an order of amino acids in a polypeptide in an amino to carboxyl terminal direction in which residues that neighbor each other in the sequence are contiguous in the primary structure of the polypeptide.

A "variant" of a polypeptide or protein refers to any analogue, fragment, derivative, or mutant which is derived from a polypeptide or protein and which retains at least one biological property of the polypeptide or protein. Different variants of the polypeptide or protein may exist in nature or may be generated artificially (e.g., via synthetic or genetic engineering). Variants may be allelic variations characterized by differences in the nucleotide sequences of the structural gene coding for the protein, or may involve differential splicing or post-translational modification. The skilled artisan can produce variants having single or multiple amino acid substitutions, deletions, additions, or replacements. Variants may include, inter alia: (a) variants in which one or more amino acid residues are substituted with, for example, conservative amino acids, non-conservative amino 55 acids, or amino acid analogs (b) variants in which one or more amino acids are added to the polypeptide or protein, (c) variants in which one or more of the amino acids includes a substituent group, and (d) variants in which the polypeptide or protein is fused with another polypeptide such as serum albumin. The techniques for obtaining these variants, including genetic (suppressions, deletions, mutations, etc.), chemical, and enzymatic techniques, are known to those of skill in the art.

The term "expression" as used herein refers to a process by which a gene produces a biochemical, for example, an RNA or polypeptide. It includes without limitation transcription of the gene into RNA molecules such as, for example,

messenger RNA (mRNA), transfer RNA (tRNA) or any other RNA product, and the translation of mRNA into polypeptide(s).

Expression of a gene produces a "gene product." As used herein, a gene product can be either a nucleic acid, e.g., a 5 messenger RNA produced by transcription of a gene, or a polypeptide which is translated from a transcript. Gene products described herein further include nucleic acids with post transcriptional modifications, e.g., polyadenylation, or polypeptides with post translational modifications, e.g., 10 methylation, glycosylation, the addition of lipids, association with other protein subunits, proteolytic cleavage, et cetera

As used herein, the term "gene" refers to a polynucleotide comprising nucleotides that encode a functional molecule, 15 including functional molecules produced by transcription only (e.g., a bioactive RNA species) or by transcription and translation (e.g. a polypeptide). The term "gene" encompasses cDNA and genomic DNA nucleic acids. "Gene" also refers to a nucleic acid fragment that expresses a specific 20 RNA, protein or polypeptide, including regulatory sequences preceding (5' non-coding sequences) and following (3' non-coding sequences) the coding sequence. "Native gene" refers to a gene as found in nature with its own regulatory sequences. "Chimeric gene" refers to any gene 25 that is not a native gene, comprising regulatory and/or coding sequences that are not found together in nature. Accordingly, a chimeric gene may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding 30 sequences derived from the same source, but arranged in a manner different than that found in nature. A chimeric gene may comprise coding sequences derived from different sources and/or regulatory sequences derived from different sources. "Endogenous gene" refers to a native gene in its 35 natural location in the genome of an organism. A "foreign" gene or "heterologous" gene refers to a gene not normally found in the host organism, but that is introduced into the host organism by gene transfer. Foreign genes can comprise native genes inserted into a non-native organism, or chime- 40 ric genes. A "transgene" is a gene that has been introduced into the genome by a transformation procedure.

"RNA transcript" refers to the product resulting from RNA polymerase-catalyzed transcription of a DNA sequence. When the RNA transcript is a perfect comple- 45 mentary copy of the DNA sequence, it is referred to as the primary transcript or it may be a RNA sequence derived from post-transcriptional processing of the primary transcript and is referred to as the mature RNA. "Messenger RNA (mRNA)" refers to the RNA that is without introns and 50 that can be translated into protein by the cell. "cDNA" refers to a double-stranded DNA that is complementary to and derived from mRNA. "Sense" RNA refers to RNA transcript that includes the mRNA and so can be translated into protein by the cell. "Antisense RNA" refers to a RNA transcript that 55 is complementary to all or part of a target primary transcript or mRNA and that blocks the expression of a target gene. The complementarity of an antisense RNA may be with any part of the specific gene transcript, i.e., at the 5' non-coding sequence, 3' non-coding sequence, or the coding sequence. 60

A "vector" refers to any vehicle for the cloning of and/or transfer of a nucleic acid into a host cell. A vector may be a replicon to which another DNA segment may be attached so as to bring about the replication of the attached segment. A "replicon" refers to any genetic element (e.g., plasmid, 65 phage, cosmid, chromosome, virus) that functions as an autonomous unit of DNA replication in vivo, i.e., capable of

14

replication under its own control. The term "vector" includes both viral and nonviral vehicles for introducing the nucleic acid into a cell in vitro, ex vivo or in vivo. A large number of vectors known in the art may be used to manipulate nucleic acids, incorporate coding sequences into genes, et cetera. Possible vectors include, for example, plasmids or modified viruses including, for example bacteriophages such as lambda derivatives, or plasmids such as pBR322 or pUC plasmid derivatives, or the Bluescript vector. Another example of vectors that are useful in the present invention is the Ultra VectorTM Production System (Intrexon Corp., Blacksburg, Va.) as described in WO 2007/038276, incorporated by reference herein. For example, the insertion of the DNA fragments corresponding to response elements and promoters into a suitable vector for in vitro and/or in vivo expression of modified forms of PE (and fragments thereof) as described herein (including fusion proteins, conjugates, and otherwise linked forms) can be accomplished by ligating the appropriate DNA fragments into a chosen vector that has complementary cohesive termini. Alternatively, the ends of the DNA molecules may be enzymatically modified or any site may be produced by ligating nucleotide sequences (linkers) into the DNA termini. Such vectors may be engineered to contain selectable marker genes that provide for the selection of cells that have incorporated the marker into the cellular genome. Such markers allow identification and/ or selection of host cells that incorporate and express the proteins encoded by the marker.

Viral vectors, and particularly retroviral vectors, have been used in a wide variety of gene delivery applications in cells, as well as living animal subjects. Viral vectors that can be used to express embodiments of the invention described herein include, but are not limited to, retrovirus, adeno-associated virus, pox, baculovirus, vaccinia, herpes simplex, Epstein-Barr, adenovirus, geminivirus, and caulimovirus vectors. Non-viral vectors include plasmids, liposomes, electrically charged lipids (cytofectins), DNA-protein complexes, and biopolymers. In addition to a nucleic acid, a vector may also comprise one or more regulatory regions, and/or selectable markers useful in selecting, measuring, and monitoring nucleic acid transfer results (e.g., monitoring transfer to target or non-target tissues, duration of expression, et cetera).

The term "plasmid" refers to an extra-chromosomal element often carrying a gene that is not part of the central metabolism of the cell, and usually in the form of circular double-stranded DNA molecules. Such elements may be autonomously replicating sequences, genome integrating sequences, phage or nucleotide sequences, linear, circular, or supercoiled, of a single- or double-stranded DNA or RNA, derived from any source, in which a number of nucleotide sequences have been joined or recombined into a unique construction which is capable of introducing a promoter fragment and DNA sequence for a selected gene product along with appropriate 3' untranslated sequence into a cell.

A "cloning vector" refers to a "replicon," which is a unit length of a nucleic acid, preferably DNA, that replicates sequentially and which comprises an origin of replication, such as a plasmid, phage or cosmid, to which another nucleic acid segment may be attached so as to bring about the replication of the attached segment. Cloning vectors may be capable of replication in one cell type and expression in another ("shuttle vector"). Cloning vectors may comprise one or more sequences that can be used for selection of cells comprising the vector and/or one or more multiple cloning sites for insertion of sequences of interest. The term "expression vector" refers to a vector, plasmid or vehicle designed

to enable the expression of an inserted nucleic acid sequence following transformation into the host. The cloned gene, i.e., the inserted nucleic acid sequence, is usually placed under the control of control elements such as a promoter, a minimal promoter, an enhancer, or the like. Initiation control regions or promoters, which are useful to drive expression of a nucleic acid in the desired host cell are numerous and familiar to those skilled in the art. Virtually any promoter capable of driving expression of these genes can be used in an expression vector, including but not limited to, viral promoters, bacterial promoters, animal promoters, mammalian promoters, synthetic promoters, constitutive promoters, tissue specific promoters, pathogenesis or disease related promoters, developmental specific promoters, inducible promoters, light regulated promoters; CYCl, HIS3, GALl, GAL4, GAL10, ADH1, PGK, PH05, GAPDH, ADC1, TRP1, URA3, LEU2, ENO, TPI, alkaline phosphatase promoters (useful for expression in Saccharomyces); AOX1 promoter (useful for expression in *Pichia*); β3-lactamase, lac, ara, tet, 20 trp, IP_L, IP_R, T7, tac, and trc promoters (useful for expression in Escherichia coli); light regulated-, seed specific-, pollen specific-, ovary specific-, cauliflower mosaic virus 35S, CMV 35S minimal, cassava vein mosaic virus (CsVMV), chlorophyll a/b binding protein, ribulose 1,5- 25 bisphosphate carboxylase, shoot-specific, root specific, chitinase, stress inducible, rice tungro bacilliform virus, plant super-promoter, potato leucine aminopeptidase, nitrate reductase, mannopine synthase, nopaline synthase, ubiquitin, zein protein, and anthocyanin promoters (useful for 30 expression in plant cells); animal and mammalian promoters known in the art including, but are not limited to, the SV40 early (SV40e) promoter region, the promoter contained in the 3' long terminal repeat (LTR) of Rous sarcoma virus (RSV), the promoters of the E1A or major late promoter 35 (MLP) genes of adenoviruses (Ad), the cytomegalovirus (CMV) early promoter, the herpes simplex virus (HSV) thymidine kinase (TK) promoter, a baculovirus IE1 promoter, an elongation factor 1 alpha (EF1) promoter, a phosphoglycerate kinase (PGK) promoter, a ubiquitin (Ubc) 40 fragment into the genome of a host organism, resulting in promoter, an albumin promoter, the regulatory sequences of the mouse metallothionein-L promoter and transcriptional control regions, the ubiquitous promoters (HPRT, vimentin, α -actin, tubulin and the like), the promoters of the intermediate filaments (desmin, neurofilaments, keratin, GFAP, and 45 the like), the promoters of the rapeutic genes (of the MDR, CFTR or factor VIII type, and the like), pathogenesis or disease related-promoters, and promoters that exhibit tissue specificity and have been utilized in transgenic animals, such as the elastase I gene control region which is active in 50 pancreatic acinar cells; insulin gene control region active in pancreatic beta cells, immunoglobulin gene control region active in lymphoid cells, mouse mammary tumor virus control region active in testicular, breast, lymphoid and mast cells; albumin gene, Apo AI and Apo All control regions 55 active in liver, alpha-fetoprotein gene control region active in liver, alpha 1-antitrypsin gene control region active in the liver, beta-globin gene control region active in myeloid cells, myelin basic protein gene control region active in oligodendrocyte cells in the brain, myosin light chain-2 gene control 60 region active in skeletal muscle, and gonadotropic releasing hormone gene control region active in the hypothalamus, pyruvate kinase promoter, villin promoter, promoter of the fatty acid binding intestinal protein, promoter of the smooth muscle cell α -actin, and the like. In addition, these expression sequences may be modified by addition of enhancer or regulatory sequences and the like.

16

Vectors comprising polynucleotides of the invention may be introduced into the desired host cells by methods known in the art, e.g., transfection, electroporation, microinjection, transduction, cell fusion, DEAE dextran, calcium phosphate precipitation, lipofection (lysosome fusion), use of a gene gun, or a DNA vector transporter (see, e.g., Wu et al, J. Biol. Chem. 267:963 (1992); Wu et al, J. Biol. Chem. 263:14621 (1988); and Hartmut et al, Canadian Patent No. 2,012,311).

Vectors and polynucleotides of the invention may be introduced in vivo by lipofection. For example, via use of liposomes for encapsulation and transfection of nucleic acids in vitro. Synthetic cationic lipids designed to limit the difficulties encountered with liposome-mediated transfection can be used to prepare liposomes for in vivo transfection of a gene encoding a marker (Feigner et al, Proc. Natl. Acad. Sci USA. 84:7413 (1987); Mackey et al, Proc. Natl. Acad. Sci USA 85:8027 (1988); and Ulmer et al, Science 259:1745 (1993)). Use of cationic lipids may promote encapsulation of negatively charged nucleic acids, and also promote fusion with negatively charged cell membranes (Feigner et al. Science 337:387 (1989)). Particularly useful lipid compounds and compositions for transfer of nucleic acids are described in WO95/18863, WO96/17823 and U.S. Pat. No. 5,459,127.

Other molecules are also useful for facilitating transfection of a nucleic acid in vivo, such as a cationic oligopeptide (e.g., WO95/21931), peptides derived from DNA binding proteins (e.g., WO96/25508), or a cationic polymer (e.g., WO95/21931).

It is also possible to introduce a vector in vivo as a naked DNA plasmid (see U.S. Pat. Nos. 5,693,622, 5,589,466 and 5,580,859). Receptor-mediated DNA delivery approaches can also be used (Curiel et al., Hum. Gene Ther. 3:147 (1992); and Wu et al., J. Biol. Chem. 262:4429 (1987)).

The term "transfection" refers to the uptake of exogenous or heterologous RNA or DNA by a cell. A cell has been "transfected" by exogenous or heterologous RNA or DNA when such RNA or DNA has been introduced inside the cell.

"Transformation" refers to the transfer of a nucleic acid genetically stable inheritance. Host organisms containing the transformed nucleic acid fragments are referred to as "transgenic" or "recombinant" or "transformed" organisms.

In addition, recombinant vector comprising polynucleotides of the invention may include one or more origins for replication in the cellular hosts in which their amplification or their expression is sought, markers or selectable markers.

The term "selectable marker" refers to an identifying factor, usually an antibiotic or chemical resistance gene, that is able to be selected for based upon the marker gene's effect, i.e., resistance to an antibiotic, resistance to a herbicide, colorimetric markers, enzymes, fluorescent markers, and the like, wherein the effect is used to track the inheritance of a nucleic acid of interest and/or to identify a cell or organism that has inherited the nucleic acid of interest. Examples of selectable marker genes known and used in the art include: genes providing resistance to ampicillin, streptomycin, gentamycin, kanamycin, hygromycin, bialaphos herbicide, sulfonamide, and the like; and genes that are used as phenotypic markers, i.e., anthocyanin regulatory genes, isopentanyl transferase gene, and the like.

The term "reporter gene" refers to a nucleic acid encoding an identifying factor that is able to be identified based upon the reporter gene's effect, wherein the effect is used to track the inheritance of a nucleic acid of interest, to identify a cell or organism that has inherited the nucleic acid of interest, and/or to measure gene expression induction or transcrip-

tion. Examples of reporter genes known and used in the art include: luciferase (Luc), green fluorescent protein (GFP), chloramphenicol acetyltransferase (CAT), β -galactosidase (LacZ), β -glucuronidase (Gus), and the like. Selectable marker genes may also be considered reporter genes.

"Promoter and "promoter sequence" are used interchangeably and refer to a DNA sequence capable of controlling the expression of a coding sequence or functional RNA. In general, a coding sequence is located 3' to a promoter sequence. Promoters may be derived in their 10 entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or 15 at different stages of development, or in response to different environmental or physiological conditions. Promoters that cause a gene to be expressed in most cell types at most times are commonly referred to as "constitutive promoters." Promoters that cause a gene to be expressed in a specific cell 20 type are commonly referred to as "cell-specific promoters" or "tissue-specific promoters." Promoters that cause a gene to be expressed at a specific stage of development or cell differentiation are commonly referred to as "developmentally-specific promoters" or "cell differentiation-specific 25 promoters." Promoters that are induced and cause a gene to be expressed following exposure or treatment of the cell with an agent, biological molecule, chemical, ligand, light, or the like that induces the promoter are commonly referred to as "inducible promoters" or "regulatable promoters." It is 30 further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, DNA fragments of different lengths may have identical promoter activity.

The promoter sequence is typically bounded at its 3' 35 terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence will be found a transcription initiation site (conveniently 40 defined for example, by mapping with nuclease S1), as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase.

A coding sequence is "under the control" of transcriptional and translational control sequences in a cell when 45 RNA polymerase transcribes the coding sequence into mRNA, which is then trans-RNA spliced (if the coding sequence contains nitrons) and translated into the protein encoded by the coding sequence.

"Transcriptional and translational control sequences" 50 refer to DNA regulatory sequences, such as promoters, enhancers, terminators, and the like, that provide for the expression of a coding sequence in a host cell. In eukaryotic cells, polyadenylation signals are control sequences.

The term "response element" ("RE") refers to one or more 55 cis-acting DNA elements which confer responsiveness on a promoter mediated through interaction with the DNA-binding domains of a transcription factor. This DNA element may be either palindromic (perfect or imperfect) in its sequence or composed of sequence motifs or half sites 60 separated by a variable number of nucleotides. The half sites can be similar or identical and arranged as either direct or inverted repeats or as a single half site or multimers of adjacent half sites in tandem. The response element may comprise a minimal promoter isolated from different organisms depending upon the nature of the cell or organism into which the response element will be incorporated. The DNA

18

binding domain of the transcription factor binds, in the presence or absence of a ligand, to the DNA sequence of a response element to initiate or suppress transcription of downstream gene(s) under the regulation of this response element.

Examples of DNA sequences for response elements of the natural ecdysone receptor include: RRGG/TTCANTGAC/ACYY (SEQ ID NO:140) (see Cherbas et. al., Genes Dev. 5:120-131 (1991)); AGGTCAN(n)AGGTCA (SEQ ID NO:141), where N(n) can be one or more spacer nucleotides (see D'Avino et al., Mol. Cell. Endocrinol. 113:1 (1995)); and GGGTTGAATGAATTT (SEQ ID NO:142) (see Antoniewski et al., Mol. Cell Biol. 14:4465 (1994)).

The terms "operably linked," "operably associated," "through operable association," and the like refer to the association of nucleic acid sequences on a single nucleic acid fragment so that the function of one is affected by the other. For example, a promoter is operably linked with a coding sequence when it is capable of affecting the expression of that coding sequence (i.e., that the coding sequence is under the transcriptional control of the promoter). Coding sequences can be operably linked to regulatory sequences in sense or antisense orientation.

The terms "cassette," "expression cassette" and "gene expression cassette" refer to a segment of DNA that can be inserted into a nucleic acid or polynucleotide at specific restriction sites or by homologous recombination. The segment of DNA comprises a polynucleotide that encodes a polypeptide of interest, and the cassette and restriction sites are designed to ensure insertion of the cassette in the proper reading frame for transcription and translation. "Transformation cassette" refers to a specific vector comprising a polynucleotide that encodes a polypeptide of interest and having elements in addition to the polynucleotide that facilitate transformation of a particular host cell. Cassettes, expression cassettes, gene expression cassettes and transformation cassettes of the invention may also comprise elements that allow for enhanced expression of a polynucleotide encoding a polypeptide of interest in a host cell. These elements may include, but are not limited to: a promoter, a minimal promoter, an enhancer, a response element, a terminator sequence, a polyadenylation sequence, and the like.

For purposes of expressing polynucleotides and polypeptides under control of a gene switch mechanism, the term "gene switch" refers to the combination of a response element associated with a promoter, and a ligand-dependent transcription factor-based system which, in the presence of one or more ligands, modulates the expression of a gene into which the response element and promoter are incorporated. Stated otherwise, a "gene switch" refers to a peptide, protein or polypeptide complex that functions to (a) bind an activating ligand, and (b) regulate the transcription of a gene of interest in a ligand-dependent fashion.

As used herein with respect to gene switch regulation systems, the term "dimerizes with the ligand binding domain that binds an activating ligand" refers to a selective protein-protein interaction that is induced by the presence of activating ligand.

As used herein, the term "ligand binding domain that binds an activating ligand" refers to an amino acid sequence that selectively binds an activating ligand. In the methods disclosed herein, an activating ligand binds to a ligand binding domain, e.g., an ecdysone receptor ligand binding domain, that is part of a ligand-dependent transcriptional activation complex that regulates the expression of a poly-

nucleotide sequence that encodes a gene of interest. Hence, the expression of the gene of interest is regulated in a ligand-dependent fashion.

The term "ecdysone receptor-based," with respect to a gene switch, refers to a gene switch comprising at least a 5 functional part of a naturally occurring or synthetic ecdysone receptor ligand binding domain and which regulates gene expression in response to a ligand that binds to the ecdysone receptor ligand binding domain.

The terms "modulate" and "modulates" mean to induce, reduce or inhibit nucleic acid or gene expression, resulting in the respective induction, reduction or inhibition of protein or polypeptide production.

Polynucleotides or vectors comprising sequences encoding polypeptides of the present invention may further comprise at least one promoter suitable for driving expression of a gene in a modified cell.

Enhancers that may be used in embodiments of the invention include but are not limited to: an SV40 enhancer, a cytomegalovirus (CMV) enhancer, an elongation factor 1 (EF1) enhancer, yeast enhancers, viral gene enhancers, et cetera.

"Regulatory region" refers to a nucleic acid sequence that regulates the expression of a second nucleic acid sequence. A regulatory region may include sequences which are naturally responsible for expressing a particular nucleic acid (a homologous region) or may include sequences of a different origin that are responsible for expressing different proteins or even synthetic proteins (a heterologous region). In particular, the sequences can be sequences of prokaryotic, eukaryotic, or viral genes or derived sequences that stimulate or repress transcription of a gene in a specific or non-specific manner and in an inducible or non-inducible manner. Regulatory regions include origins of replication, RNA splice sites, promoters, enhancers, transcriptional termination sequences, and signal sequences which direct the polypeptide into the secretory pathways of the target cell.

The term "exogenous gene" or "heterologous gene" 40 means a gene foreign to the subject or organism, that is, a gene which is introduced into the subject through a transformation process, an unmutated version of an endogenous mutated gene or a mutated version of an endogenous unmutated gene. The method of transformation is not critical to 45 this invention and may be any method suitable for the subject known to those in the art. Exogenous genes can be either natural or synthetic genes which are introduced into the subject in the form of DNA or RNA which may function through a DNA intermediate such as by reverse transcriptase. Such genes can be introduced into target cells, directly introduced into the subject, or indirectly introduced by the transfer of transformed cells into the subject.

Polynucleotides and polypeptides of the invention may be expressed in vivo under control of a "gene switch" control 55 mechanism, such as those described in, for example, but not limited to:

WO 2009/025866 (PCT/US2008/010040); WO 2008/073154 (PCT/US2007/016747); WO 2005/108617 (PCT/US2005/015089); WO 2003/0/27289 (PCT/US2002/005026); WO 2002/066615 (PCT/US2002/005708); WO 2003/027266 (PCT/US/2002/05234);

WO 2009/045370 (PCT/US2008/011270);

WO 2002/066612 (PCT/US2002/005090); WO 2002/066614 (PCT/US/2002/005706);

WO 2002/066613 (PCT/US2002/005090);

20

WO 2002/029075 (PCT/US2001/030608); and WO 2001/070816 (PCT/US2001/090500),

each of which are incorporated by reference herein.

The term "ligand-dependent transcription factor complex" or "LDTFC" refers to a transcription factor comprising one or more protein subunits, which complex can regulate gene expression driven by a "factor-regulated promoter" as defined herein. A model LDTFC is an "ecdysone receptor complex" generally refers to a heterodimeric protein complex having at least two members of the nuclear receptor family, ecdysone receptor ("EcR") and ultraspiracle ("USP") proteins (see Yao et al., Nature 366:476 (1993)); Yao et al., Cell 71:63 (1992)). A functional LDTFC such as an EcR complex may also include additional protein(s) such as immunophilins. Additional members of the nuclear receptor family of proteins, known as transcriptional factors (such as DHR38, betaFTZ-1 or other insect homologs), may also be ligand dependent or independent partners for EcR and/or USP. A LDTFC such as an EcR complex can also be a heterodimer of EcR protein and the vertebrate homolog of ultraspiracle protein, retinoic acid-X-receptor ("RXR") protein or a chimera of USP and RXR. The terms "LDTFC" and "EcR complex" also encompass homodimer complexes of the EcR protein or USP, as well as single polypeptides or trimers, tetramer, and other multimers serving the same function.

A LDTFC such as an EcR complex can be activated by an active ecdysteroid or non-steroidal ligand bound to one of the proteins of the complex, inclusive of EcR, but not excluding other proteins of the complex. As used herein, the term "ligand," as applied to LDTFC-based gene switches e.g., EcD complex based gene switches, describes small and soluble molecules having the capability of activating a gene switch to stimulate expression of a polypeptide encoded therein. Examples of ligands include, without limitation, an ecdysteroid, such as ecdysone, 20-hydroxyecdysone, ponasterone A, muristerone A, and the like, 9-cis-retinoic acid, synthetic analogs of retinoic acid, N,N'-diacylhydrazines such as those disclosed in U.S. Pat. Nos. 6,013,836; 5,117, 057; 5,530,028; 5,378,726; and 7,304,161 and U.S. Pat. No. 7,456,315; oxadiazolines as described in U.S. Pat. No. 7,304,162; dibenzovlalkyl cyanohydrazines such as those disclosed in European Patent No. 461,809B1; N-alkyl-N,N'diaroylhydrazines such as those disclosed in U.S. Pat. No. 5,225,443; N-acyl-N-alkylcarbonylhydrazines such as those disclosed in European Patent No. 234,994B1; N-aroyl-Nalkyl-N'-arovlhydrazines such as those described in U.S. Pat. No. 4,985,461; amidoketones such as those described in U.S. Pat. No. 7,375,093; each of which is incorporated herein by reference and other similar materials including 3,5-di-tert-butyl-4-hydroxy-N-isobutyl-benzamide, acetylharpagide, oxysterol s, 22(R) hydroxycholesterol, 24(S) hydroxycholesterol, 25-epoxycholesterol, T0901317, 5-alpha-6-alpha-epoxycholesterol-3-sulfate (ECHS), 7-ketocholesterol-3-sulfate, famesol, bile acids, 1,1-biphosphonate esters, juvenile hormone III, and the like. Examples of diacylhydrazine ligands useful in the present invention include RG-115819 (3,5-Dimethyl-benzoic acid N-(1-ethyl-2,2-dimethyl-propyl)-N'-(2-methyl-3-methoxy-benzoyl)-

60 hydrazide), RG-115932 ((R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(2-ethyl-3-methoxy-benzoyl)-hydrazide), and RG-115830 (3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(2-ethyl-3-methoxy-benzoyl)-hydrazide). See, e.g., U.S. Pat. No. 8,076,517 (Publication No.

2009/0163592), and PCT Appl. No. PCT/US2008/006757 (WO 2008/153801), both of which are incorporated herein by reference in their entireties.

A LDTFC such as an EcR complex includes proteins which are members of the nuclear receptor superfamily wherein all members are characterized by the presence of one or more polypeptide subunits comprising an aminoterminal transactivation domain ("AD," "TD," or "TA," used interchangeably herein), a DNA binding domain ("DBD"), and a ligand binding domain ("LBD"). The AD may be present as a fusion with a "heterodimerization partner" or "HP." A fusion protein comprising an AD and HP of the invention is referred to herein as a "coactivation 10 protein" or "CAP." The DBD and LBD may be expressed as a fusion protein, referred to herein as a "ligand-inducible transcription factor ("LTF"). The fusion partners may be separated by a linker, e.g., a hinge region. Some members of the LTF family may also have another transactivation 15 domain on the carboxy-terminal side of the LBD. The DBD is characterized by the presence of two cysteine zinc fingers between which are two amino acid motifs, the P-box and the D-box, which confer specificity for ecdysone response elements. These domains may be either native, modified, or 20 chimeras of different domains of heterologous receptor proteins.

EcR ligands, when used with a LDTFC, e.g., an EcR complex, which in turn is bound to the response element linked to an exogenous gene (e.g., a reporter gene), provide 25 the means for external temporal regulation of expression of the exogenous gene. The order in which the various components bind to each other, that is, ligand to receptor complex and receptor complex to response element, is not critical. Typically, modulation of expression of the exog- 30 enous gene is in response to the binding of a LDTFC, e.g., an EcR complex, to a specific control, or regulatory, DNA element. The EcR protein, like other members of the nuclear receptor family, possesses at least three domains, an AD, a DBD, and a LBD. This receptor, like a subset of the nuclear 35 receptor family, also possesses less well-defined regions responsible for heterodimerization properties (referred to herein as a "heterodimerization partner" or "HP"). Binding of the ligand to the ligand binding domain of a LTF, e.g., an EcR protein, after heterodimerization with a CAP including, 40 e.g., an AD and/or an HP, e.g., a USP or RXR protein, enables the DNA binding domains of the heterodimeric proteins to bind to the response element in an activated form, thus resulting in expression or suppression of the exogenous gene. This mechanism does not exclude the potential for 45 ligand binding to individual subunits, e.g., LTF or CAP, e.g., an EcR or USP, and the resulting formation of active homodimer complexes (e.g. EcR+EcR or USP+USP). In one embodiment, one or more of the receptor domains can be varied producing a chimeric gene switch. Typically, one or 50 more of the three domains may be chosen from a source different than the source of the other domains so that the chimeric receptor is optimized in the chosen host cell or organism for transactivating activity, complementary binding of the ligand, and recognition of a specific response 55 element. In addition, the response element itself can be modified or substituted with response elements for other DNA binding protein domains such as the GAL-4 protein from yeast (see Sadowski et al., Nature 335:563 (1988) or LexA protein from E. coli (see Brent et al., Cell 43:729-736 60 (1985)) to accommodate chimeric LDTFCs, e.g., EcR complexes. Another advantage of chimeric systems is that they allow choice of a promoter used to drive the exogenous gene according to a desired end result. Such double control can be particularly important in areas of gene therapy, especially when cytotoxic proteins are produced, because both the timing of expression as well as the cells wherein expression

22

occurs can be controlled. When exogenous genes, operatively linked to a suitable promoter, are introduced into the cells of the subject, expression of the exogenous genes is controlled by the presence of the ligand of this invention. Promoters may be constitutively or inducibly regulated or may be tissue-specific (that is, expressed only in a particular type of cell) or specific to certain developmental stages of the organism.

For in vivo use, the ligands described herein may be taken up in pharmaceutically acceptable carriers, such as, for example, solutions, suspensions, tablets, capsules, ointments, elixirs, and injectable compositions. Pharmaceutical compositions may contain from 0.01% to 99% by weight of the ligand. Compositions may be either in single or multiple dose forms. The amount of ligand in any particular pharmaceutical composition will depend upon the effective dose, that is, the dose required to elicit the desired gene expression or suppression.

Suitable routes of administering the pharmaceutical preparations include oral, rectal, topical (including dermal, buccal and sublingual), vaginal, parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intrathecal and epidural) and by naso-gastric tube. It will be understood by those skilled in the art that the preferred route of administration will depend upon the condition being treated and may vary with factors such as the condition of the recipient.

As used herein, the terms "treat" or "treatment" refer to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) an undesired physiological change or disorder, such as the development, progression or spread (i.e., metastasis) of cancer. Beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total). "Treatment" can also mean prolonging survival as compared to expected survival if not receiving treatment. Those in need of treatment include those already with the condition or disorder as well as those prone to have the condition or disorder or those in which the condition or disorder is to be prevented.

The terms "subject," "individual," "animal," "patient," or "mammal," is meant any subject, particularly a mammalian subject, for whom diagnosis, prognosis, or therapy is desired. Mammalian subjects include, without limitation, humans, domestic animals, farm animals, and zoo, sports, or pet animals such as dogs, cats, guinea pigs, rabbits, rats, mice, horses, cattle, cows, et cetera.

The terms "hyperproliferative disease or disorder" is intended to encompass all neoplastic cell growth and proliferation, whether malignant or benign, including all transformed cells and tissues and all cancerous cells and tissues. Hyperproliferative diseases or disorders include, but are not limited to, precancerous lesions, abnormal cell growths, tumors (whether benign or malignant), "cancer" and other hyperplasias.

The term "cancer" includes, but is not limited to, primary malignant cells or tumors (e.g., those whose cells have not migrated to sites in the subject's body other than the site of the original malignancy or tumor) and secondary malignant cells or tumors (e.g., those arising from metastasis, the migration of malignant cells or tumor cells to secondary sites that are different from the site of the original tumor).

A tumor or tumor tissue may also comprise "tumorassociated non-tumor cells", e.g., vascular cells which form

blood vessels to supply the tumor or tumor tissue. Nontumor cells may be induced to replicate and develop by tumor cells, for example, the induction of angiogenesis in a tumor or tumor tissue.

Some examples of cancer include, but are not limited to, 5 carcinoma, lymphoma, blastoma, sarcoma, and leukemia or lymphoid malignancies. More particular examples of such cancers are noted below and include: squamous cell cancer (e.g. epithelial squamous cell cancer), lung cancer including small-cell lung cancer, non-small cell lung cancer, adeno- 10 carcinoma of the lung and squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer including gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, rectal cancer, colorectal cancer, endometrial cancer or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, as well as head (e.g., brain) and neck

Other examples of cancers or malignancies include, but are not limited to: Acute Childhood Lymphoblastic Leukemia, Acute Lymphoblastic Leukemia, Acute Lymphocytic Leukemia, Acute Myeloid Leukemia, Adrenocortical Carcinoma, Adult (Primary) Hepatocellular Cancer, Adult (Pri- 25 mary) Liver Cancer, Adult Acute Lymphocytic Leukemia, Adult Acute Myeloid Leukemia, Adult Hodgkin's Disease, Adult Hodgkin's Lymphoma, Adult Lymphocytic Leukemia, Adult Non-Hodgkin's Lymphoma, Adult Primary Liver Cancer, Adult Soft Tissue Sarcoma, AIDS-Related Lym- 30 phoma, AIDS-Related Malignancies, Anal Cancer, Astrocytoma, Bile Duct Cancer, Bladder Cancer, Bone Cancer, Brain Stem Glioma, Brain Tumors, Breast Cancer, Cancer of the Renal Pelvis and Ureter, Central Nervous System (Primary) Lymphoma, Central Nervous System Lymphoma, 35 Cerebellar Astrocytoma, Cerebral Astrocytoma, Cervical Cancer, Childhood (Primary) Hepatocellular Cancer, Childhood (Primary) Liver Cancer, Childhood Acute Lymphoblastic Leukemia, Childhood Acute Myeloid Leukemia, Childhood Brain Stem Glioma, Childhood Cerebellar Astro- 40 biochemical properties. cytoma, Childhood Cerebral Astrocytoma, Childhood Extracranial Germ Cell Tumors, Childhood Hodgkin's Disease, Childhood Hodgkin's Lymphoma, Childhood Hypothalamic and Visual Pathway Glioma, Childhood Lymphoblastic Leukemia, Childhood Medulloblastoma, Childhood 4 Non-Hodgkin's Lymphoma, Childhood Pineal Supratentorial Primitive Neuroectodermal Tumors, Childhood Primary Liver Cancer, Childhood Rhabdomyosarcoma, Childhood Soft Tissue Sarcoma, Childhood Visual Pathway and Hypothalamic Glioma, Chronic Lymphocytic 5 Leukemia, Chronic Myelogenous Leukemia, Colon Cancer, Cutaneous T cell Lymphoma, Endocrine Pancreas Islet Cell Carcinoma, Endometrial Cancer, Ependymoma, Epithelial Cancer, Esophageal Cancer, Ewing's Sarcoma and Related Tumors, Exocrine Pancreatic Cancer, Extracranial Germ 5 Cell Tumor, Extragonadal Germ Cell Tumor, Extrahepatic Bile Duct Cancer, Eye Cancer, Female Breast Cancer, Gaucher's Disease, Gallbladder Cancer, Gastric Cancer, Gastrointestinal Carcinoid Tumor, Gastrointestinal Tumors, Germ Cell Tumors, Gestational Trophoblastic Tumor, Hairy Cell 6 Leukemia, Head and Neck Cancer, Hepatocellular Cancer, Hodgkin's Disease, Hodgkin's Lymphoma, Hypergammaglobulinemia, Hypopharyngeal Cancer, Intestinal Cancers, Intraocular Melanoma, Islet Cell Carcinoma, Islet Cell Pancreatic Cancer, Kaposi's Sarcoma, Kidney Cancer, Laryn- 65 geal Cancer, Lip and Oral Cavity Cancer, Liver Cancer, Lung Cancer, Lymphoproliferative Disorders, Macroglobu24

linemia, Male Breast Cancer, Malignant Mesothelioma, Malignant Thymoma, Medulloblastoma, Melanoma, Mesothelioma, Metastatic Occult Primary Squamous Neck Cancer, Metastatic Primary Squamous Neck Cancer, Metastatic Squamous Neck Cancer, Multiple Myeloma, Multiple Myeloma/Plasma Cell Neoplasm, Myelodysplastic Syndrome, Myelogenous Leukemia, Myeloid Leukemia, Myeloproliferative Disorders, Nasal Cavity and Paranasal Sinus Cancer, Nasopharyngeal Cancer, Neuroblastoma, Non-Hodgkin's Lymphoma During Pregnancy, Nonmelanoma Skin Cancer, Non-Small Cell Lung Cancer, Occult Primary Metastatic Squamous Neck Cancer, Oropharyngeal Cancer, Osteo-/Malignant Fibrous Sarcoma, Osteosarcoma/ Malignant Fibrous Histiocytoma, Osteosarcoma/Malignant Fibrous Histiocytoma of Bone, Ovarian Epithelial Cancer, Ovarian Germ Cell Tumor, Ovarian Low Malignant Potential Tumor, Pancreatic Cancer, Paraproteinemias, Purpura, Parathyroid Cancer, Pheochromocytoma, Pituitary Tumor, 20 Plasma Cell Neoplasm/Multiple Myeloma, Primary Central Nervous System Lymphoma, Primary Liver Cancer, Prostate Cancer, Rectal Cancer, Renal Cell Cancer, Renal Pelvis and Ureter Cancer, Retinoblastoma, Rhabdomyosarcoma, Salivary Gland Cancer, Sarcoidosis Sarcomas, Sezary Syndrome, Skin Cancer, Small Cell Lung Cancer, Small Intestine Cancer, Soft Tissue Sarcoma, Squamous Neck Cancer, Stomach Cancer, Supratentorial Primitive Neuroectodermal and Pineal Tumors, T cell Lymphoma, Testicular Cancer, Thymoma, Thyroid Cancer, Transitional Cell Cancer of the Renal Pelvis and Ureter, Transitional Renal Pelvis and Ureter Cancer, Trophoblastic Tumors, Ureter and Renal Pelvis Cell Cancer, Urethral Cancer, Uterine Cancer, Uterine Sarcoma, Vaginal Cancer, Visual Pathway and Hypothalamic Glioma, Vulvar Cancer, Waldenstrom's Macroglobulinemia, Wilms' Tumor, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed

Naturally Occurring Amino Acid Substitutions List of naturally occurring amino acids and some of their

Amino Acid	3- Letter Code	1- Letter Code	Side-chain polarity*	Side-chain charge (pH 7.4)*	Hydropathy index**
Alanine	Ala	A	nonpolar	neutral	1.8
Arginine	Arg	R	polar	positive	-4.5
Asparagine	Asn	N	polar	neutral	-3.5
Aspartic acid	Asp	D	polar	negative	-3.5
Cysteine	Cys	С	polar	neutral	2.5
Glutamic acid	Glu	Е	polar	negative	-3.5
Glutamine	Gln	Q	polar	neutral	-3.5
Glycine	Gly	G	nonpolar	neutral	-0.4
Histidine	His	Н	polar	positive(10%) neutral(90%)	-3.2
Isoleucine	Ile	I	nonpolar	neutral	4.5
Leucine	Leu	L	nonpolar	neutral	3.8
Lysine	Lys	K	polar	positive	-3.9
Methionine	Met	M	nonpolar	neutral	1.9
Phenylalanine	Phe	F	nonpolar	neutral	2.8
Proline	Pro	P	nonpolar	neutral	-1.6
Serine	Ser	S	polar	neutral	-0.8
Threonine	Thr	T	polar	neutral	-0.7
Tryptophan	Trp	W	nonpolar	neutral	-0.9
Tyrosine	Tyr	Y	polar	neutral	-1.3
Valine	Val	V	nonpolar	neutral	4.2

*Hausman & Cooper, (2004), The Cell: A Molecular Approach, Washington, D.C: ASM Press, p. 51 (2004)(ISBN 0-87893-214-3).
**Kyte & Doolittle, "A simple method for displaying the hydropathic character of a protein," Journal of Molecular Biology, 157(1): 105-132 (May 1982).

25

Conservative Amino Acid Substitutions

Polypeptides may be made to differ by introduction of conservative or non-conservative amino acid changes. Conservative amino acid substitutions refer to the interchangeability of residues having similar amino acid side chains. 5 "Conservative amino acid substitutions" refer to substitutions of one or more amino acids in a native amino acid sequence (e.g., wild-type or naturally occurring form of PE) with other amino acid(s) having similar side chains (e.g., side chains similar in terms of size, charge, element composition, and/or hydrophobicity/hydrophilicity).

Conserved substitutes for an amino acid within a native amino acid sequence can be selected from other members of the group to which the naturally occurring amino acid belongs. For example, conservative amino acid residue 15 substitution groups include:

- (1) Alanine (A)-Glycine (G)-Serine (S)-Threonine;
- (2) Aspartic acid (D)-Glutamic acid (E);
- (3) Asparagine (N)-Glutamine (Q);
- (4) Arginine (R)-Lysine (K)-Histidine (H):
- (5) Isoleucine (I)-Leucine (L)-Methionine (M)-Valine (V); and
 - (6) Phenylalanine (F)-Tyrosine (Y)-Tryptophan (W).

Other substitution groups of amino acids can be envisioned. For example, amino acids can be grouped by similar 25 function or chemical structure or composition (e.g., acidic, basic, aliphatic, aromatic, sulfur-containing). For example, an Aliphatic grouping may comprise: Glycine (G), Alanine (A), Valine (V), Leucine (L), Isoleucine (I). Other groups containing amino acids that are considered conservative 30 substitutions for one another include:

Aromatic: Phenylalanine (F)-Tyrosine (Y)-Tryptophan (W);

Sulfur-containing: Methionine (M)-Cysteine (C);

Basic: Arginine (R)-Lysine (K)-Histidine (H);

Acidic: Aspartic acid (D)-Glutamic acid (E);

Non-polar uncharged residues: Cysteine (C)-Methionine (M)-Proline (P); and

Hydrophilic Uncharged Residues: Serine (S)-Threonine (T)-Asparagine (N)-Glutamine (Q).

Exemplary embodiments of conservative amino acid substitutions include the interchangeability of: valine-leucine, valine-isoleucine-leucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, aspartic acid-glutamic acid, and asparagine-glutamine.

Examples of Amino Acid Analogs and Non-Standard Amino Acid Residues

Examples of a few of the many possible amino acid analogs routinely known to those of skill in the art include, for example, but without limitation, analogs such as: 4-hy-50 droxyproline which may be substituted for proline; 5-hydroxylysine which may be substituted for lysine; 3-methylhistidine which may be substituted for histidine; homoserine which may be substituted for serine; and ornithine which may be substituted for lysine.

Examples of a few of the many possible non-standard amino acids routinely known to those of skill in the art include, for example, but without limitation, molecules such as: ornithine, citrulline, lanthionine, 2-aminoisobutyric acid, dehydroalanine, γ -aminobutyric acid, β -alanine (3-aminopropanoic acid), selenocysteine and pyrrolysine.

Substitution mutations may be made by any technique for mutagenesis known in the art including, for example, but not limited to, in vitro site-directed mutagenesis (Hutchinson et al, *J. Biol. Chem.* 255:6551 (1978); Zoller et al, *DNA* 3:479 65 (1984); Oliphant et al, *Gene* 44:177 (1986); Hutchinson et al, *Proc. Natl. Acad. Sci. USA* 83:710 (1986)), use of TAB®

26

linkers (Pharmacia), restriction endonuclease digestion/fragment deletion and substitution, PCR-mediated/oligonucle-otide-directed mutagenesis, et cetera. PCR-based techniques are preferred for site-directed mutagenesis (see Higuchi, 1989, "Using PCR to Engineer DNA", in PCR Technology: Principles and Applications for DNA Amplification, H. Erlich, ed., Stockton Press, Chapter 6, pp. 61-70).

Embodiments of the Invention

Embodiments of the invention include isolated polypeptides (proteins) comprising or consisting of a modified form of *Pseudomonas* exotoxin A, or a fragment thereof, wherein said modified form, or fragment thereof, comprises an epitope selected from the group consisting of:

```
ISFSTRGTQ (epitope 1; SEQ ID NO: 5);

GTQNWTVER (epitope 2; SEQ ID NO: 6);

IVFGGVRAR (epitope 3; SEQ ID NO: 7);

ARSQDLDAI (epitope 4; SEQ ID NO: 8);

LRVYVPRSS (epitope 5; SEQ ID NO: 9);

and

IPDKEQAIS (epitope 6; SEQ ID NO: 10)
```

wherein one or more amino acid residues in any one or more of these epitopes are substituted with a different amino acid residue.

Embodiments of the invention include isolated polypeptides (proteins) comprising or consisting of a modified form of *Pseudomonas* exotoxin A, or a fragment thereof, wherein said modified form, or fragment thereof, comprises an epitope selected from the group consisting of:

```
GDGGDISFSTRGTON
   (peptide 50 (epitope 1); SEQ ID NO: 60);
   SFSTRGTONWTVERL
   (peptide 52 (epitope 2); SEQ ID NO: 62);
   TRGTONWTVERLLOA
   (peptide 53 (epitope 2); SEQ ID NO: 63);
45
   AOSIVFGGVRARSOD
   (peptide 65 (epitope 3); SEQ ID NO: 75);
   GGVRARSODLDAIWR
   (peptide 67 (epitope 4); SEQ ID NO: 77);
   RARSODLDAIWRGFY
   (peptide 68 (epitope 4); SEQ ID NO: 78);
   NGALLRVYVPRSSLP
   (peptide 81 (epitope 5); SEQ ID NO: 91);
   LLRVYVPRSSLPGFY
   (peptide 82 (epitope 5); SEQ ID NO: 92);
   LDPSSIPDKEQAISA
   (peptide 110 (epitope 6); SEQ ID NO: 120);
   SSIPDKEQAISALPD
   (peptide 111 (epitope 6); SEQ ID NO: 121);
   ISFSTRGTONWTVER
   (overlapping epitopes 1 and 2; SEQ ID NO: 131);
   IVFGGVRARSODLDAI
   (overlapping epitopes 3 and 4; SEQ ID NO: 132)
```

27

wherein one or more amino acid residues in any one or more of these epitopes are substituted with a different amino acid residue.

Embodiments of the invention include isolated polypeptides (proteins) comprising or consisting of a modified form 5 of Pseudomonas exotoxin A, or a fragment thereof, wherein said modified form, or fragment thereof, comprises an epitope selected from the group consisting of:

- a) ISFSTRGTQ (SEQ ID NO:5), wherein amino acid residues at one or more of positions 1, 6 and 9 are 10 substituted with a different amino acid residue;
- b) GTQNWTVER (SEQ ID NO:6), wherein amino acid residues at one or more of positions 3, 4 and 6 are substituted with a different amino acid residue;
- c) IVFGGVRAR (SEQ ID NO:7), wherein amino acid 15 residues at one or more of positions 1 and 6 are substituted with a different amino acid residue;
- d) ARSQDLDAI (SEQ ID NO:8), wherein amino acid residues at one or more of positions 4 and 7 are substituted with a different amino acid residue:
- e) LRVYVPRSS (SEQ ID NO:9), wherein amino acid residues at one or more of positions 1, 2 and 9 are substituted with a different amino acid residue;
- f) IPDKEQAIS (SEQ ID NO:10), wherein amino acid residues at one or more of positions 1, 4, 6 and 7 are 25 substituted with a different amino acid residue;
- g) ISFSTRGTQNWTVER (SEQ ID NO:131), wherein amino acid residues at one or more of positions 1, 6, 9, 10 and 12 are substituted with a different amino acid
- h) IVFGGVRARSQDLDAI (SEQ ID NO: 132), wherein amino acid residues at one or more of positions 1, 6, 11, and 14 are substituted with a different amino acid

Embodiments of the invention include isolated polypep- 35 tides (proteins) comprising or consisting of a modified form of Pseudomonas exotoxin A, or a fragment thereof, wherein said modified form, or fragment thereof, comprises an epitope selected from the group consisting of:

- a) ISFSTRGTQ (SEQ ID NO:5), wherein amino acid 40 residues at one or more of positions 1, 6 and 9 are substituted with a conservative amino acid substitution;
- b) GTQNWTVER (SEQ ID NO:6), wherein amino acid residues at one or more of positions 3, 4 and 6 are
- c) IVFGGVRAR (SEQ ID NO:7), wherein amino acid residues at one or more of positions 1 and 6 are substituted with a conservative amino acid substitution;
- d) ARSQDLDAI (SEQ ID NO:8), wherein amino acid residues at one or more of positions 4 and 7 are 50 substituted with a conservative amino acid substitution;
- e) LRVYVPRSS (SEQ ID NO:9), wherein amino acid residues at one or more of positions 1, 2 and 9 are substituted with a conservative amino acid substitution;
- f) IPDKEQAIS (SEQ ID NO:10), wherein amino acid 55 residues at one or more of positions 1, 4, 6 and 7 are substituted with a conservative amino acid substitution;
- g) ISFSTRGTQNWTVER (SEQ ID NO:131), wherein amino acid residues at one or more of positions 1, 6, 9, 10 and 12 are substituted with a conservative amino 60 acid substitution; and
- h) IVFGGVRARSQDLDAI (SEQ ID NO: 132), wherein amino acid residues at one or more of positions 1, 6, 11, and 14 are substituted with a conservative amino acid substitution.

Embodiments of the invention include isolated polypeptides (proteins) comprising or consisting of a modified form 28

of Pseudomonas exotoxin A, or a fragment thereof, wherein said modified form, or fragment thereof, comprises an epitope selected from the group consisting of:

- a) ISFSTRGTQ (SEQ ID NO:5), wherein amino acid residues at one or more of positions 1, 6 and 9 are substituted with a conservative amino acid substitution;
- b) GTQNWTVER (SEQ ID NO:6), wherein amino acid residues at one or more of positions 3, 4 and 6 are substituted with a conservative amino acid substitution;
- c) IVFGGVRAR (SEQ ID NO:7), wherein amino acid residues at one or more of positions 1 and 6 are substituted with a conservative amino acid substitution;
- d) ARSQDLDAI (SEQ ID NO:8), wherein amino acid residues at one or more of positions 4 and 7 are substituted with a conservative amino acid substitution:
- e) LRVYVPRSS (SEQ ID NO:9), wherein amino acid residues at one or more of positions 1, 2 and 9 are substituted with a conservative amino acid substitution;
- f) IPDKEQAIS (SEQ ID NO:10), wherein amino acid residues at one or more of positions 1, 4, 6 and 7 are substituted with a conservative amino acid substitution;
- g) ISFSTRGTQNWTVER (SEQ ID NO:131), wherein amino acid residues at one or more of positions 1, 6, 9, 10 and 12 are substituted with a conservative amino acid substitution; and
- h) IVFGGVRARSQDLDAI (SEQ ID NO: 132), wherein amino acid residues at one or more of positions 1, 6, 11, and 14 are substituted with a conservative amino acid substitution,
- wherein the conservative amino acid substitution at one or more of said positions in a) through f) is selected from the group consisting of:
- 1) A is substituted with any one of G, I, L, S, T or V;
- 2) D is substituted with E;
- 3) I is substituted with any one of L, M or V;
- 4) K is substituted with any one of H or R;
- 5) L is substituted with any one of A, G, I, M or V;
- 6) N is substituted with any one of S, T or Q;
- 7) Q is substituted with any one of S, T or N;
- 8) R is substituted with any one of K or H;
- 9) S is substituted with any one of A, G, N, T or Q;
- 10) T is substituted with any one of A, G, N, Q or S; and
- 11) V is substituted with any one of A, G, I, L or M.

Embodiments of the invention also comprise or consist of substituted with a conservative amino acid substitution; 45 isolated polypeptides and peptides comprising or consisting of the above-referenced amino acids sequences, except wherein one or more amino acids have been substituted with conservative amino acids substitutions. Embodiments of the invention further comprise or consist of isolated polypeptides (proteins) and peptides comprising or consisting of the above-referenced amino acids sequences, except wherein one or more amino acids have been substituted with amino acids which are naturally occurring, non-naturally occurring, non-standard amino acids, or amino acid analogs.

> Embodiments of the invention include isolated polypeptides (proteins) comprising or consisting of a modified form of Pseudomonas exotoxin A, or a fragment thereof, wherein said modified form, or fragment thereof, comprises an epitope selected from the group consisting of:

a) ISFSTRGTQ (SEQ ID NO:5), wherein amino the acid residue at position 1 (I) is substituted with A, N, T, Q or H, or wherein the amino acid residue at position 6 (R) is substituted with Q, or wherein the amino acid residue at position 9 (Q) is substituted with N or T, or wherein the amino acid sequence ISFSTRGTQ (SEQ ID NO:5) comprises two or more of said substitutions in any combination;

- b) GTQNWTVER (SEQ ID NO:6), wherein the amino acid residue at position 3 (Q) is substituted with N or T, wherein amino the acid residue at position 4 (N) is substituted with K or R, or wherein the amino acid residue at position 6 (T) is substituted with K or R, or wherein the amino acid sequence GTONWTVER (SEO ID NO:6) comprises two or more of said substitutions in any combination;
- c) IVFGGVRAR (SEQ ID NO:7), wherein amino the acid residue at position 1 (I) is substituted with A or N, or wherein the amino acid residue at position 6 (V) is substituted with D, M, or N, or wherein the amino acid sequence IVFGGVRAR (SEQ ID NO:7) comprises substitutions at both positions in any combination of 15 (epitope 2) amino acid residues A or N at position 1 (I) and D, M, or N at position 6 (V);
- d) ARSQDLDAI (SEQ ID NO:8), wherein amino the acid residue at position 4 (Q) is substituted with K or R, or wherein the amino acid residue at position 7 (D) is 20 substituted with K or R, or wherein the amino acid sequence ARSQDLDAI (SEQ ID NO:8) comprises substitutions with K or R in any combination at both positions 4 (Q) and 7 (D);
- e) LRVYVPRSS (SEQ ID NO:9), wherein amino the acid 25 residue at position 1 (L) is substituted with A, or wherein the amino acid residue at position 2 (R) is substituted with D, S or A, or wherein the amino acid residue at position 9 (S) is substituted with D, E, N, K, P or T, or wherein the amino acid sequence 30 LRVYVPRSS (SEQ ID NO:9) comprises two or more of said substitutions in any combination;
- f) IPDKEQAIS (SEQ ID NO:10), wherein amino acid residues at one or more of positions 1, 4, 6 and 7 are substituted with a different amino acid residue. wherein 35 amino the acid residue at position 1 (I) is substituted with A, N, T, Q or H, or wherein the amino acid residue at position 4 (K) is substituted with T, or wherein the amino acid residue at position 6 (Q) is substituted with D, or wherein the amino acid residue at position 7 (A) 40 ID NO: 1. is substituted with D, or wherein the amino acid sequence IPDKEQAIS (SEQ ID NO:10) comprises two or more of said substitutions in any combination;
- g) ISFSTRGTQNWTVER (SEQ ID NO:131), wherein amino acid residues at one or more of positions 1, 6, 9, 10 and 12 are substituted with a different amino acid residues wherein amino the acid residue at position 1 (I) is substituted with A, N, T, Q or H, or wherein the amino acid residue at position 6 (R) is substituted with Q, or wherein the amino acid residue at position 9 (Q) 50 is substituted with N or T, or wherein amino the acid residue at position 10 (N) is substituted with K or R, or wherein the amino acid residue at position 12 (T) is substituted with K or R, or wherein the amino acid sequence ISFSTRGTQNWTVER (SEQ ID NO: 131) 55 comprises two or more of said substitutions in any combination; and
- h) IVFGGVRARSQDLDAI (SEQ ID NO:132), wherein amino the acid residue at position 1 (I) is substituted with A or N, or wherein the amino acid residue at 60 position 6 (V) is substituted with D, M, or N, wherein amino the acid residue at position 11 (Q) is substituted with K or R, or wherein the amino acid residue at position 14 (D) is substituted with K or R, or wherein the amino acid sequence IVFGGVRARSQDLDAI (SEQ ID NO: 132) comprises two or more of said substitutions in any combination.

30

Embodiments of the invention include an isolated polypeptide comprising a modified form of Pseudomonas exotoxin A, or a fragment thereof, wherein said modified form, or fragment thereof, comprises one or more amino acid substitutions selected from the group consisting of:

- a) I at position 141 changed to any amino acid residue; (epitope 1)
- b) R at position 146 changed to any amino acid residue; (epitope 1)
- c) Q at position 149 changed to any amino acid residue; (epitope 1)
- d) N at position 150 changed to any amino acid residue; (epitope 2)
- e) T at position 152 changed to any amino acid residue;
- f) I at position 184 changed to any amino acid residue; (epitope 3)
- g) V at position 189 changed to any amino acid residue; (epitope 3)
- h) O at position 194 changed to any amino acid residue: (epitope 4)
- i) D at position 197 changed to any amino acid residue; (epitope 4)
- j) L at position 233 changed to any amino acid residue; (epitope 5)
- k) R at position 234 changed to any amino acid residue; (epitope 5)
- 1) S at position 241 changed to any amino acid residue; (epitope 5)
- m) I at position 321 changed to any amino acid residue; (epitope 6)
- n) K at position 324 changed to any amino acid residue; (epitope 6)
- o) Q at position 326 changed to any amino acid residue; (epitope 6)
- p) A at position 327 changed to any amino acid residue; (epitope 6)
- q) any combination of one or more of a) through ao), wherein the amino acid numbering corresponds to SEQ

Embodiments of the invention include an isolated polypeptide comprising a modified form of Pseudomonas exotoxin A, or a fragment thereof, wherein said modified form, or fragment thereof, comprises one or more amino acid substitutions selected from the group consisting of:

- a) I at position 141 changed to A; (epitope 1)
- b) I at position 141 changed to N; (epitope 1)
- c) I at position 141 changed to T; (epitope 1)
- d) I at position 141 changed to Q; (epitope 1)
- e) I at position 141 changed to H; (epitope 1)
- f) R at position 146 changed to Q; (epitope 1)
- g) Q at position 149 changed to N; (epitope 1) h) Q at position 149 changed to T; (epitope 1)
- i) N at position 150 changed to R; (epitope 2) j) N at position 150 changed to K; (epitope 2)
- k) T at position 152 changed to R; (epitope 2)
- 1) T at position 152 changed to K; (epitope 2)
- m) I at position 184 changed to A; (epitope 3)
- n) I at position 184 changed to N; (epitope 3)
- o) V at position 189 changed to D; (epitope 3)
- p) V at position 189 changed to M; (epitope 3)
- q) V at position 189 changed to N; (epitope 3)
- r) Q at position 194 changed to R; (epitope 4)
- s) Q at position 194 changed to K; (epitope 4)
- t) D at position 197 changed to R; (epitope 4) u) D at position 197 changed to K; (epitope 4)
- v) L at position 233 changed to A; (epitope 5)

```
31
                                                                                    32
  w) R at position 234 changed to D; (epitope 5)
                                                                               -continued
  x) R at position 234 changed to S; (epitope 5)
                                                              VDQVIRNALASPGSG (peptide 24; SEQ ID NO: 34);
  y) R at position 234 changed to A; (epitope 5)
  z) S at position 241 changed to D; (epitope 5)
                                                              VIRNALASPGSGGDL (peptide 25; SEQ ID NO: 35);
  ab) S at position 241 changed to E; (epitope 5)
                                                              NALASPGSGGDLGEA (peptide 26; SEQ ID NO: 36);
  ac) S at position 241 changed to N; (epitope 5)
  ad) S at position 241 changed to K; (epitope 5)
                                                              ASPGSGGDLGEAIRE (peptide 27; SEQ ID NO: 37);
  ae) S at position 241 changed to P; (epitope 5)
                                                              GSGGDLGEAIREQPE (peptide 28; SEQ ID NO: 38);
  af) S at position 241 changed to T; (epitope 5)
                                                       10
  ag) I at position 321 changed to A; (epitope 6)
                                                              GDLGEAIREQPEQAR (peptide 29; SEQ ID NO: 39);
  ah) I at position 321 changed to N; (epitope 6)
                                                              GEAIREQPEQARLAL (peptide 30; SEQ ID NO: 40);
  ai) I at position 321 changed to T; (epitope 6)
  ak) I at position 321 changed to Q; (epitope 6)
                                                              IREQPEQARLALTLA (peptide 31; SEQ ID NO: 41);
  al) I at position 321 changed to H; (epitope 6)
                                                       15
                                                              QPEQARLALTLAAAE (peptide 32; SEQ ID NO: 42);
  am) K at position 324 changed to T; (epitope 6)
  an) Q at position 326 changed to D; (epitope 6)
                                                              QARLALTLAAAESER (peptide 33; SEQ ID NO: 43);
  ao) A at position 327 changed to D; (epitope 6)
  ap) any combination of one or more of a) through ao),
                                                              LALTLAAAESERFVR (peptide 34; SEQ ID NO: 44);
  wherein the amino acid numbering corresponds to SEQ 20
                                                              TLAAAESERFVRQGT (peptide 35; SEQ ID NO: 45);
ID NO: 1.
  Embodiments of the invention comprise isolated polypep-
                                                              AAESERFVRQGTGND (peptide 36; SEQ ID NO: 46);
tides as described above, including polypeptides comprising
                                                              SERFVRQGTGNDEAG (peptide 37; SEQ ID NO: 47);
amino acid substitutions introduced at each of amino acid
positions 141, 146, 149, 150, 152, 184, 189, 194, 197, 233, <sub>25</sub>
                                                              FVRQGTGNDEAGAAS (peptide 38; SEQ ID NO: 48);
234, 241, 321, 324, 326 and 327 (in comparison to the amino
acid sequence of SEQ ID NO: 1).
                                                              QGTGNDEAGAASGPA (peptide 39; SEQ ID NO: 49);
  Embodiments of the invention include isolated polypep-
                                                              GNDEAGAASGPADSG (peptide 40; SEQ ID NO: 50);
tides (proteins) and peptides comprising, or consisting of,
the following amino acid sequences:
                                                       30
                                                              EAGAASGPADSGDAL (peptide 41; SEQ ID NO: 51);
                                                              AASGPADSGDALLER (peptide 42; SEQ ID NO: 52);
   GGGGGGGGGSPEG (peptide 1; SEQ ID NO: 11);
                                                              GPADSGDALLERNYP (peptide 43; SEQ ID NO: 53);
   GGSGGGGSPEGGSL (peptide 2; SEO ID NO: 12);
                                                              DSGDALLERNYPTGA (peptide 44; SEQ ID NO: 54);
                                                       35
   GGGGGSPEGGSLAAL (peptide 3; SEQ ID NO: 13);
                                                              DALLERNYPTGAEFL (peptide 45; SEQ ID NO: 55);
   GGSPEGGSLAALTAH (peptide 4; SEQ ID NO: 14);
                                                              LERNYPTGAEFLGDG (peptide 46; SEQ ID NO: 56);
   PEGGSLAALTAHQAC (peptide 5; SEQ ID NO: 15);
                                                              NYPTGAEFLGDGGDI (peptide 47; SEQ ID NO: 57);
                                                       40
   GSLAALTAHQACHLP (peptide 6; SEQ ID NO: 16);
                                                              TGAEFLGDGGDISFS (peptide 48; SEQ ID NO: 58);
   AALTAHQACHLPLET (peptide 7; SEQ ID NO: 17);
                                                              EFLGDGGDISFSTRG (peptide 49; SEQ ID NO: 59);
   TAHQACHLPLETFTR (peptide 8; SEQ ID NO: 18);
                                                              GDISFSTRGTQNWTV (peptide 51; SEQ ID NO: 61);
                                                       45
   HLPLETFTRHRQPRG (peptide 10; SEQ ID NO: 20);
                                                              TQNWTVERLLQAHRQ (peptide 54; SEQ ID NO: 64);
   LETFTRHRQPRGWEQ (peptide 11; SEQ ID NO: 21);
                                                              WTVERLLQAHRQLEE (peptide 55; SEQ ID NO: 65);
   FTRHRQPRGWEQLEQ (peptide 12; SEQ ID NO: 22);
                                                              ERLLQAHRQLEERGY (peptide 56; SEQ ID NO: 66);
   HRQPRGWEQLEQCGY (peptide 13; SEQ ID NO: 23);
                                                       50
                                                              LQAHRQLEERGYVFV (peptide 57; SEQ ID NO: 67);
   PRGWEGLEQCGYPVQ (peptide 14; SEQ ID NO: 24);
                                                              HRQLEERGYVFVGYH (peptide 58; SEQ ID NO: 68);
   WEQLEQCGYPVQRLV (peptide 15; SEQ ID NO: 25);
                                                              LEERGYVFVGYHGTF (peptide 59; SEQ ID NO: 69);
   LEQCGYPVQRLVALY (peptide 16; SEQ ID NO: 26);
                                                              RGYVFVGYHGTFLEA (peptide 60; SEQ ID NO: 70);
   CGYPVQRLVALYLAA (peptide 17; SEQ ID NO: 27);
                                                              GYHGTFLEAAQSIVF (peptide 62; SEQ ID NO: 72);
   PVQRLVALYLAARLS (peptide 18; SEQ ID NO: 28);
                                                              GTFLEAAQSIVFGGV (peptide 63; SEQ ID NO: 73);
   RLVALYLAARLSWNQ (peptide 19; SEQ ID NO: 29);
```

65

ALYLAARLSWNQVDQ (peptide 20; SEQ ID NO: 30);

LAARLSWNQVDQVIR (peptide 21; SEQ ID NO: 31);

RLSWNQVDQVIRNAL (peptide 22; SEQ ID NO: 32);

WLQVDQVIRNALASP (peptide 23; SEQ ID NO: 33);

LEAAQSIVFGGVRAR (peptide 64; SEQ ID NO: 74);

IVFGGVRARSQDLDA (peptide 66; SEQ ID NO: 76);

SQDLDAIWRGFYIAG (peptide 69; SEQ ID NO: 79);

LDAIWRGFYIAGDPA (peptide 70; SEQ ID NO: 80);

```
-continued
IWRGFYIAGDPALAY (peptide 71; SEQ ID NO: 81);
GFYIAGDPALAYGYA (peptide 72; SEQ ID NO: 82);
IAGDPALAYGYAQDQ (peptide 73; SEQ ID NO: 83);
DPALAYGYAQDQEPD (peptide 74; SEQ ID NO: 84);
LAYGYAQDQEPDARG (peptide 75; SEQ ID NO: 85);
GYAQDQEPDARGRIR (peptide 76; SEQ ID NO: 86);
QDQEPDARGRIRNGA (peptide 77; SEQ ID NO: 87);
EPDARGRIRNGALLR (peptide 78; SEO ID NO: 88);
ARGRIRNGALLRVYV (peptide 79; SEQ ID NO: 89);
RIRNGALLRVYVPRS (peptide 80; SEQ ID NO: 90);
VYVPRSSLPGFYRTG (peptide 83; SEQ ID NO: 93);
PRSSLPGFYRTGLTL (peptide 84; SEQ ID NO: 94);
SLPGFYRTGLTLAAP (peptide 85; SEQ ID NO: 95);
GFYRTGLTLAAPEAA (peptide 86; SEQ ID NO: 96);
RTGLTLAAPEAAGEV (peptide 87; SEQ ID NO: 97);
LTLAAPEAAGEVERL (peptide 88; SEQ ID NO: 98);
AAPEAAGEVERLIGH (peptide 89; SEQ ID NO: 99);
EAAGEVERLIGHPLP (peptide 90; SEQ ID NO: 100);
GEVERLIGHPLPLRL (peptide 91; SEQ ID NO: 101);
ERLIGHPLPLRLDAI (peptide 92; SEQ ID NO: 102);
IGHPLPLRLDAITGP (peptide 93; SEQ ID NO: 103);
PLPLRLDAITGPEEE (peptide 94; SEQ ID NO: 104);
LRLDAITGPEEEGGR (peptide 95; SEQ ID NO: 105);
DAITGPEEEGGRLET (peptide 96; SEQ ID NO: 106);
TGPEEEGGRLETILG (peptide 97; SEQ ID NO: 107);
EEEGGRLETILGWPL (peptide 98; SEQ ID NO: 108);
GGRLETILGWPLAER (peptide 99; SEQ ID NO: 109);
LETILGWPLAERTVV (peptide 100; SEQ ID NO: 110);
ILGWPLAERTVVIPS (peptide 101; SEO ID NO: 111);
WPLAERTVVIPSAIP (peptide 102: SEO ID NO: 112):
AERTVVIPSAIPTDP (peptide 103; SEQ ID NO: 113);
TVVIPSAIPTDPRNV (peptide 104; SEQ ID NO: 114);
IPSAIPTDPRNVGGD (peptide 105; SEO ID NO: 115);
AIPTDPRNVGGDLDP (peptide 106; SEQ ID NO: 116);
TDPRNVGGDLDPSSI (peptide 107; SEQ ID NO: 117);
RNVGGDLDPSSIPDK (peptide 108; SEQ ID NO: 118);
GGDLDPSSIPDKEQA (peptide 109; SEQ ID NO: 119);
PDKEQAISALPDYAS (peptide 112; SEQ ID NO: 122);
EQAISALPDYASQPG (peptide 113; SEQ ID NO: 123);
ISALPDYASQPGKPP (peptide 114; SEQ ID NO: 124);
LPDYASQPGKPPRED (peptide 115; SEQ ID NO: 125);
```

-continued

```
YASQPGKPPREDLK (peptide 116; SEQ ID NO: 126);

ITGPEEEGGRLDTIL (peptide 117; SEQ ID NO: 127);

PEEEGGRLDTILGWP (peptide 118; SEQ ID NO: 128);

EGGRLDTILGWPLAE (peptide 119; SEQ ID NO: 129);
and

RLDTILGWPLAERTV (peptide 120; SEQ ID NO: 130).
```

Embodiments of the invention also comprise or consist of isolated polypeptides (proteins) and peptides comprising or consisting of the above-referenced amino acids sequences, except wherein one or more amino acids have been substituted with conservative amino acids substitutions. Embodiments of the invention also comprise or consist of isolated polypeptides (proteins) and peptides comprising or consisting of the above-referenced amino acids sequences, except wherein one or more amino acids have been substituted with amino acids which are naturally occurring, non-naturally occurring, non-standard amino acids, or amino acid analogs.

Embodiments of the invention include polypeptides comprising a PE-A Domain III (i.e., a cytotoxic domain; see e.g., FIG. 1). Examples of sequences comprising a cytotoxic portion of PE can be found in SEQ ID NO:1 and SEQ ID NO:4 spanning amino acid residues Phe-134 to Lys-347. Examples of sequences comprising a cytotoxic portion of PE can also be found in SEQ ID NO:133 and SEQ ID NO:134 spanning amino acid residues Phe-400 to Lys-613.

Embodiments of the invention include polypeptides comprising a PE-A Domain III (i.e., a cytotoxic domain) and one or more PE-A domains selected from the group consisting of:

- (a) Domain II (i.e., a cytosolic translocation domain; e.g., amino acids corresponding to Gly-3 to Ser-114 in SEQ ID NO: 1 or amino acids corresponding to Gly-3 to Asn-114 in SEQ ID NO:4, see e.g., FIG. 1);
- (b) Carboxy-terminal portion of Domain IB (e.g., amino acids corresponding to Gly-115 to Glu-133 in SEQ ID NO:1 or SEQ ID NO:4; and amino acids corresponding to Gly-381 to Glu-399 in SEQ ID NO:133 or SEQ ID NO:134; see e.g., FIG. 1);
- (c) Amino-terminal portion of Domain IB (e.g., amino acids corresponding to Ala-365 to Ala-380 in SEQ ID NO:133 or SEQ ID NO:134; see e.g., FIG. 1);
- (d) Domain IB (i.e., amino acid sequences intervening between Domains II and III; e.g., amino acids corresponding to Ala-365 to Glu-399 in SEQ ID NO:133 or SEQ ID NO:134; see e.g., FIG. 1);
- (e) a carboxy-terminal tail selected from the group consisting of:

```
(i) Arg-Glu-Asp-Leu-Lys (SEQ ID NO: 135);
(ii) Arg-Glu-Asp-Leu (SEQ ID NO: 136);
and
(iii) Lys-Asp-Glu-Leu (SEQ ID NO: 137),
```

60

wherein one or more of said domains has been modified with amino acid substitutions, as described herein, to reduce or eliminate immunogenicity.

Embodiments of the invention further comprise PE variants. For example, such variants include, without limitation,

PE polypeptide examples as shown in SEQ ID Nos: 143 to 163 and SEQ ID No:175.

Embodiments of the invention comprise any one or more of the PE-A domains indicated in the preceding paragraphs, wherein said one or more domains are chemically linked, covalently coupled, or fused (i.e., as in-frame fusion proteins) with a heterologous polypeptide (for example, such as ligand or antigen-binding polypeptide).

Embodiments of the invention include polypeptides comprising PE wherein one or more amino acids are substituted with any combination of one or more conservative amino acid substitutions, non-conservative amino acid substitutions, non-naturally occurring amino acid substitutions, nonstandard amino acids, and/or substitutions with amino acid analogs and further wherein said polypeptides are nonimmunogenic or exhibit reduced immunogenicity as determined and assayed by comparison to immunogenicity of corresponding non-amino acid substituted forms of PE; as measured using in vitro or in vivo assays. In particular 20 embodiments, amino acid substituted forms of PE are at least 25%, at least about 25%, at least 50%, at least about 50%, at least 75%, or at least about 75% less immunogenic compared to corresponding non-amino acid substituted forms of PE. In particular embodiments, amino acid substi- 25 tuted forms of PE are at least 2-fold, at least about 2-fold, at least 3-fold, at least about 3-fold, at least 4-fold, at least about 4-fold, at least 5-fold, at least about 5-fold, at least 10-fold, at least about 10-fold, at least 50-fold, at least about 50-fold, at least 100-fold, at least about 100-fold, at least 500-fold, at least about 500-fold, at least 1000-fold, or at least about 1000-fold less immunogenic compared to corresponding non-amino acid substituted forms of PE. In one embodiment, amino acid substituted forms of PE are nonimmunogenic or exhibit undetectable immunogenicity compared to corresponding non-amino acid substituted forms of

The immunogenicity of substituted peptides may be measured via assays routinely known and used by those of skill 40 in the art. For example, immunogenicity may be assayed by methods including, but not limited to, the proliferation assays described in Example 1 herein.

Additionally, methods for predicting, and assays for assessing, immunogenicity include those methods and 45 assays such as described or referenced in:

Baker M P and Jones T D. Identification and removal of immunogenicity in therapeutic proteins. *Curr. Opin. Drug. Disc. Dev.* 2007 10(2): 219-227.

Bryson C J, Jones T D, Baker M P. Prediction of immunogenicity of therapeutic proteins: validity of computational tools. *BioDrugs*. 2010; 24(1):1-8.

Chester, K, Baker, M P and Mayer A. Overcoming the immunologic response to foreign enzymes in cancer therapy. Expert Rev. Clin. Immunol. 2006 1(4): 549-55 559.

Hochuli E. Interferon immunogenicity: technical evaluation of interferon-alpha 2a. *J Interferon Cytokine Res.* 1997 17 Suppl 1:S15-21.

Jaber A and Baker M P. Assessment of the immunogenicity of different interferon beta-1a formulations using ex vivo T cell assays. J Pharm Biomed Anal 2007 43(4):1256-61.

Perry L C, Jones T D and Baker M P. New approaches to prediction of immune responses to therapeutic proteins during preclinical development. *Drugs R D.* 2008 9(6): 385-96.

36

Schellekens, H., Ryff, J. C., and Van Der Meide, P. H. Assays for antibodies to human interferon-alpha: the need for standardization. *J. Interferon Cytokine Res.* 1997 17(Suppl. 1), S5-S8.

Embodiments of the invention include polypeptides comprising PE wherein one or more amino acids are substituted with any combination of one or more conservative amino acid substitutions, non-conservative amino acid substitutions, non-naturally occurring amino acid substitutions, nonstandard amino acids, and/or substitutions with amino acid analogs and further wherein said polypeptides retain biological activity as determined and assayed by comparison to biological activities of corresponding non-amino acid substituted forms of PE; such as, but not limited to, cell killing activity, cell cytotoxicity, inactivation of the translation elongation factor EF-2, ADP-ribosylation of EF-2, and inhibition of protein synthesis as measured using in vitro or in vivo assays. In particular embodiments, amino acid substituted forms of PE exhibit 100% or about 100% of biological activity compared to corresponding non-amino acid substituted forms of PE. In particular embodiments, amino acid substituted forms of PE exhibit at least 95%, or at least about 95% of biological activity compared to corresponding nonamino acid substituted forms of PE. In particular embodiments, amino acid substituted forms of PE exhibit at least 90%, at least about 90%, at least 85%, at least about 85%, at least 80%, at least about 80%, at least 75%, at least about 75%, at least 70%, at least about 70%, at least 60%, at least about 60%, at least 50%, or at least about 50% of biological activity compared to corresponding non-amino acid substituted forms of PE.

Embodiments of the invention further comprise fusion proteins, conjugates, covalently-linked, and non-covalently linked amino acid substituted forms of PE, or fragments thereof, as described herein. Amino acid substituted forms of PE may be fused, conjugated or otherwise linked with any artificial, recombinant, or naturally occurring molecule or polypeptide to modify PE activity and/or PE localization/ targeting, such as by conferring to PE, via said fusion or conjugation, the tissue targeting, cell targeting, or subcellular localization properties of the molecule to which PE is fused, conjugated or otherwise linked. For example, but without limitation, amino acid substituted forms, or fragments thereof, of PE may be fused, conjugated, or otherwise linked with any type of antibody or antigen-binding fragments thereof, cell-surface receptor, secreted or cell-surface ligand, or fragments thereof.

In one embodiment, amino acid substituted forms of PE, including amino acid substituted forms of PE fused, conjugated or otherwise linked to another molecule or polypeptide are useful in the treatment of cancer; including, but not limited to, types of cancer described herein. In one embodiment, amino acid substituted forms of PE as described herein are useful for the preparation of a medicament for the treatment of cancer; including, but not limited to, types of cancer described herein.

In one embodiment, amino acid substituted forms of PE, or fragments thereof, may be fused, conjugated, or otherwise linked, without limitation, antigen-binding moieties such as antibodies, or fragments thereof, which specifically or preferentially bind to disease associated antigens. Such molecules include, for example, but without limitation, antibodies indicated in Table 1.

TABLE 1

		ADLE I	
	Examples of Antib	odies and Therapeutic	Uses
NAME	TRADE NAME	Putative Antigen Targets	Example(s) of Therapeutic Use
3F8		GD2	neuroblastoma
ABAGOVOMAB		CA-125	ovarian cancer
ABCIXIMAB	REOPRO	(imitation) CD41 (integrin	platelet aggregation
ADCIAIWAD	KEOI KO	alpha-IIb)	inhibitor
ADALIMUMAB	HUMIRA	TNF-α	rheumatoid arthritis etc.
ADECATUMUMAB		EpCAM	prostate and breast cancer
AFELIMOMAB		TNF-α	sepsis
AFUTUZUMAB ALACIZUMAB		CD20 VEGFR2	lymphoma cancer
PEGOL		VEGTK2	Calicei
ALD518		IL-6	rheumatoid arthritis
ALEMTUZUMAB	CAMPATH,	CD52	CLL, CTCL
	MABCAMPATH		
ALTUMOMAB	HYBRI-	CEA	colorectal cancer
PENTETATE	CEAKER	TAG-72	(diagnosis) non-small cell lung
ANATUMOMAB MAFENATOX		1AG-72	carcinoma
ANRUKINZUMAB		IL-13	antigen-induced pulmonary
			inflammation, asthma
APOLIZUMAB		HLA-DR	hematological cancers
ARCITUMOMAB	CEA-SCAN	CEA	gastrointestinal cancers
A CEL TZUM A D		I galactic	(diagnosis)
ASELIZUMAB		L-selectin (CD62L)	severely injured patients
ATLIZUMAB	ACTEMRA,	IL-6 receptor	rheumatoid arthritis
	ROACTEMRA		
ATOROLIMUMAB		Rhesus factor	hemolytic disease of the
			newborn
BAPINEUZUMAB	~~ ~~ ~~	beta amyloid	Alzheimer's disease
BASILIXIMAB	SIMULECT	CD25 (α chain of	prevention of organ
BAVITUXIMAB		IL-2 receptor) phosphatidylserine	transplant rejections cancer, viral infections
BECTUMOMAB	LYMPHOSCAN	CD22	non-Hodgkin's lymphoma
			(detection)
BELIMUMAB	BENLYSTA,	BAFF	non-Hodgkin lymphoma
	LYMPHOSTAT-B		etc.
BENRALIZUMAB		CD125	asthma
BERTILIMUMAB BESILESOMAB	CONTINUN	CCL11 (eotaxin-1)	severe allergic disorders inflammatory lesions and
DESILESOWAD	SCINTIMUN	CEA-related antigen	metastases (defection)
BEVACIZUMAB	AVASTIN	VEGF-A	metastatic cancer
BICIROMAB	FIBRISCINT	fibrin II, beta chain	thromboembolism
			(diagnosis)
BIVATUZUMAB		CD44 v6	squamous cell carcinoma
MERTANSINE		OD10	
BLINATUMOMAB BRENTUXIMAB		CD19 CD30 (TNFRSF8)	cancer hematologic cancers
VEDOTIN		CD30 (INFRSF6)	nematologic cancers
BRIAKINUMAB		IL-12, IL-23	psoriasis, rheumatoid
			arthritis, inflammatory
			bowel diseases, multiple
	II ADIG	TT 1	sclerosis
CANAKINUMAB	ILARIS	IL-1	rheumatoid arthritis
CANTUZUMAB MERTANSINE		mucin CanAg	colorectal cancer etc.
CAPROMAB	PROSTASCINT	prostatic	prostate cancer (detection)
PENDETIDE		carcinoma cells	, sameer (detection)
CATUMAXOMAB	REMOVAB	EpCAM, CD3	ovarian cancer, malignant
			ascites, gastric cancer
CC49		TAG-72	tumor detection
CEDELIZUMAB		CD4	prevention of organ
			transplant rejections, treatment of autoimmune
			diseases
CERTOLIZUMAB	CIMZIA	TNF-α	Crohn's disease
PEGOL			
CETUXIMAB	ERBITUX	EGFR	metastatic colorectal cancer
			and head and neck cancer
CITATUZUMAB		EpCAM	ovarian cancer and other
BOGATOX		IGF-1 receptor	solid tumors solid tumors
			SOUG HIHIOFS
CIXUTUMUMAB			
CIXUTUMUMAB CLENOLIXIMAB CLIVATUZUMAB		CD4 MUC1	rheumatoid arthritis pancreatic cancer

TABLE 1-continued

Examples of Antibodies and Therapeutic Uses					
NAME	TRADE NAME	Putative Antigen Targets	Example(s) of Therapeutic Use		
CONATUMUMAB CR6261		TRAIL-R2 Influenza A hemagglutinin	cancer infectious disease/influenza A		
DACETUZUMAB DACLIZUMAB	ZENAPAX	CD40 CD25 (α chain of IL-2 receptor)	hematologic cancers prevention of organ transplant rejections		
DARATUMUMAB		CD38 (cyclic ADP ribose hydrolase)	myleoma, CD38-positive multiple myeloma		
DENOSUMAB	PROLIA	RANKL	osteoporosis, bone metastases etc.		
DETUMOMAB DORLIMOMAB ARITOX DORLIXIZUMAB		B-lymphoma cell auto immune associated antigen CD3	lymphoma auto immune disorders type 1 diabetes, autoimmune diseases		
ECROMEXIMAB ECULIZUMAB	SOLIRIS	GD3 ganglioside C5	malignant melanoma paroxysmal nocturnal hemoglobinuria		
EDOBACOMAB		Endotoxin	sepsis caused by Gram- negative bacteria		
EDRECOLOMAB EFALIZUMAB	PANOREX RAPTIVA	EpCAM LFA-1 (CD11a)	colorectal carcinoma psoriasis (blocks T-cell migration)		
EFUNGUMAB ELOTUZUMAB ELSILIMOMAB ENLIMOMAB/ ENLIMOMAB	MYCOGRAB	Hsp90 SLAMF7 IL-6 ICAM-1 (CD54)	invasive Candida infection multiple myeloma Lymphoma, myeloma stroke		
PEGOL EPITUMOMAB CITUXETAN		Episialin	cancer		
EPRATUZUMAB ERLIZUMAB		CD22 ITGB2 (CD18)	cancer, SLE heart attack, stroke, traumatic shock		
ERTUMAXOMAB ETARACIZUMAB	REXOMUN ABEGRIN	HER2/neu, CD3 integrin ανβ3	breast cancer etc. melanoma, prostate cancer,		
EXBIVIRUMAB		hepatitis B surface antigen	ovarian cancer etc. hepatitis B		
FANOLESOMAB FARALIMOMAB FARLETUZUMAB FELVIZUMAB	NEUTROSPEC	CD15 interferon receptor folate receptor 1 respiratory syncytial virus	appendicitis (diagnosis) autoimmune disorders ovarian cancer respiratory syncytial virus infection		
FEZAKINUMAB		IL-22	rheumatoid arthritis,		
FIGITUMUMAB		IGF-1 receptor	adrenocortical carcinoma, non-small cell lung carcinoma etc.		
FONTOLIZUMAB FORAVIRUMAB	HUZAF	IFN-γ rabies virus glycoprotein	Crohn's disease etc. rabies (prophylaxis)		
FRESOLIMUMAB GALIXIMAB		TGF-β	idiopathic pulmonary fibrosis, local segmental glomerulosclerosis, cancer B-cell lymphoma		
GANTENERUMAB GAVILIMOMAB GEMTUZUMAB	MYLOTARG	beta amyloid CD147 (basigin) CD33	Alzheimer's disease graft versus host disease acute myelogenous		
OZOGAMICIN GIRENTUXIMAB	RENCAREX	carbonic anhydrase 9 (CA-	leukemia clear cell renal cell carcinoma		
GLEMBATUMUMAB VEDOTIN		IX) GPNMB	melanoma, breast cancer		
GOLIMUMAB	SIMPONI	TNF-α	rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis		
GOMILIXIMAB		CD23 (IgE receptor)	allergic asthma		
IBALIZUMAB IBRITUMOMAB	ZEVALIN	CD4 CD20	HIV infection non-Hodgkin's lymphoma		
TIUXETAN IGOVOMAB	INDIMACIS- 125	CA-125	ovarian cancer (diagnosis)		

TABLE 1-continued

	Examples of Anti	bodies and Therapeutic	Uses
NAME	TRADE NAME	Putative Antigen Targets	Example(s) of Therapeutic Use
IMCIROMAB INFLIXIMAB	MYOSCINT REMICADE	cardiac myosin TNF-α	cardiac imaging rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis, Crohn's disease, ulcerative colitis
INTETUMUMAB		CD51	solid tumors (prostate cancer, melanoma)
INOLIMOMAB		CD25 (α chain of IL-2 receptor)	graft versus host disease
INOTUZUMAB OZOGAMICIN IPILIMUMAB IRATUMUMAB KELIXIMAB	YERVOY	CD22 CD152 CD30 (TNFRSF8) CD4	cancer melanoma Hodgkin's lymphoma chronic asthma
KELIAIMAB LABETUZUMAB LEBRIKIZUMAB LEMALESOMAB	CEA-CIDE	CEA IL-13 NCA-90 (granulocyte	colorectal cancer asthma diagnostic agent
LERDELIMUMAB		antigen) TGF beta 2	reduction of scarring after glaucoma surgery
LEXATUMUMAB LIBIVIRUMAB		TRAIL-R2 hepatitis B surface	cancer hepatitis B
LINTUZUMAB LORVOTUZUMAB MERTANSINE		antigen CD33 CD56	cancer
LUCATUMUMAB		CD40	multiple myeloma, non- Hodgkin's lymphoma, Hodgkin's lymphoma
LUMILIXIMAB		CD23 (IgE receptor)	chronic lymphocytic leukemia
MAPATUMUMAB MASLIMOMAB MATUZUMAB		TRAIL-R1 T-cell receptor EGFR	cancer autoimmune disorders colorectal, lung and stomach cancer
MEPOLIZUMAB	BOSATRIA	IL-5	asthma and white blood cell diseases
METELIMUMAB MILATUZUMAB		TGF beta 1 CD74	systemic scleroderma multiple myeloma and other hematological malignancies
MINRETUMOMAB MITUMOMAB MOROLIMUMAB MOTAVIZUMAB	NUMAX	TAG-72 GD3 ganglioside Rhesus factor respiratory	cancer small cell lung carcinoma disease antigen respiratory syncytial virus
MUROMONAB- CD3	ORTHOCLONE OKT3	syncytial virus CD3	(prevention) prevention of organ transplant rejections
NACOLOMAB TAFENATOX		C242 antigen	colorectal cancer
NAPTUMOMAB ESTAFENATOX		5T4	non-small cell lung carcinoma, renal cell carcinoma
NATALIZUMAB	TYSABRI	integrin α4	multiple sclerosis, Crohn's disease
NEBACUMAB NECITUMUMAB		Endotoxin EGFR	sepsis non-small cell lung carcinoma
NERELIMOMAB NIMOTUZUMAB	THERACIM, THERALOC	TNF-α EGFR	auto immune disorders squamous cell carcinoma, head and neck cancer, nasopharyngeal cancer, glioma
NOFETUMOMAB MERPENTAN OCRELIZUMAB	VERLUMA	cancer-associated antigen CD20	cancer (diagnosis) rheumatoid arthritis, lupus
ODULIMOMAB		LFA-1 (CD11a)	erythematosus etc. prevention of organ transplant rejections,
OFATUMUMAB	ARZERRA	CD20	immunological diseases chronic lymphocytic
			leukemia

TABLE 1-continued

	TABL	E 1-continued			
Examples of Antibodies and Therapeutic Uses					
NAME	TRADE NAME	Putative Antigen Targets	Example(s) of Therapeutic Use		
OMALIZUMAB OPORTUZUMAB	XOLAIR	IgE Fc region EpCAM	allergic asthma cancer		
MONATOX OREGOVOMAB OTELIXIZUMAB PAGIBAXIMAB	OVAREX	CA-125 CD3 lipoteichoic acid	ovarian cancer diabetes mellitus type 1		
PALIVIZUMAB	SYNAGIS, ABBOSYNAGIS	respiratory syncytial virus	sepsis (Staphylococcus) respiratory syncytial virus (prevention)		
PANITUMUMAB PANOBACUMAB	VECTIBIX	EGFR Pseudomonas aeruginosa	colorectal cancer Pseudomonas aeruginosa infection		
PASCOLIZUMAB PEMTUMOMAB PERTUZUMAB PEXELIZUMAB	THERAGYN OMNITARG	IL-4 MUC1 HER2/neu C5	asthma cancer cancer reduction of side effects of		
PINTUMOMAB		adenocarcinoma antigen	cardiac surgery adenocarcinoa		
PRILIXIMAB		CD4	Crohn's disease, multiple sclerosis		
PRITUMUMAB PRO 140 RAFIVIRUMAB		vimentin CCR5 rabies virus glycoprotein	brain cancer HIV infection rabies (prophylaxis)		
RAMUCIRUMAB RANIBIZUMAB	LUCENTIS	VEGFR2 VEGF-A	solid tumors macular degeneration (wet form)		
RAXIBACUMAB		anthrax toxin, protective antigen	anthrax (prophylaxis and treatment)		
REGAVIRUMAB		cytomegalovirus glycoprotein B	cytomegalovirus infection		
RESLIZUMAB		IL-5	inflammations of the airways, skin and gastrointestinal tract		
RILOTUMUMAB RITUXIMAB	MABTHERA, RITUXAN	HGF CD20	solid tumors lymphomas, leukemias, some autoimmune disorders		
ROBATUMUMAB RONTALIZUMAB		IGF-1 receptor IFN- α	cancer systemic lupus		
ROVELIZUMAB RUPLIZUMAB SATUMOMAB PENDETIDE	LEUKARREST ANTOVA	CD11, CD18 CD154 (CD40L) TAG-72	erythematosus haemorrhagic shock rheumatic diseases cancer		
SEVIRUMAB SIBROTUZUMAB SIFALIMUMAB		cytomegalovirus FAP IFN-α	cytomegalovirus infection cancer SLE, dermatomyositis,		
SILTUXIMAB SIPLIZUMAB		IL-6 CD2	polymyositis cancer psoriasis, graft-versus-host		
SOLANEZUMAB SONEPCIZUMAB		beta amyloid sphiagosine-1- phosphate	disease (prevention) Alzheimer's disease choroidal and retinal neovascularization		
SONTUZUMAB STAMULUMAB SULESOMA	LEUKOSCAN	episialin myostatin NCA-90 (granulocyte	disease antigen muscular dystrophy osteomyelitis (imaging)		
TACATUZUMAB	AFP-CIDE	antigen) alpha-fetoprotein	cancer		
TETRAXETAN TADOCIZUMAB		integrin αIIbβ3	percutaneous coronary intervention		
TALIZUMAB TANEZUMAB TAPLITUMOMAB PAPTOX		IgE NGF CD19	allergic reaction pain cancer		
TEFIBAZUMAB	AUREXIS	clumping factor A	Staphylococcus aureus infection		
TELIMOMAB ARITOX TENATUMOMAB TENELIXIMAB		autoimmune antigen tenascin C CD40	autoimmune disorders cancer autoimmune disorders		
TEPLIZUMAB		CD3	diabetes mellitus type 1		

systemic lupus

host disease

erythematosus, graft-versus-

TABLE 1-continued						
	Examples of Antibodies and Therapeutic Uses					
NAME	TRADE NAME	Putative Antigen Targets	Example(s) of Therapeutic Use			
TGN1412		CD2	chronic lymphocytic leukemia, rheumatoid arthritis			
TICILIMUMAB TIGATUZUMAB TNX-650		CTLA-4 TRAIL-R2 IL-13	cancer cancer Hodgkin's lymphoma			
TOCILIZUMAB	ACTEMRA, ROACTEMRA	IL-6 receptor	rheumatoid arthritis			
TORALIZUMAB		CD154 (CD40L)	rheumatoid arthritis, lupus nephritis			
TOSITUMOMAB TRASTUZUMAB TREMELIMUMAB TUCOTUZUMAB CELMOLEUKIN	BEXXAR HERCEPTIN	CD20 HER2/neu CTLA-4 EpCAM	follicular lymphoma breast cancer cancer cancer			
TUVIRUMAB URTOXAZUMAB USTEKINUMAB	STELARA	hepatitis B virus <i>Escherichia coli</i> IL-12, IL-23	chronic hepatitis B diarrhoea caused by <i>E. coli</i> multiple sclerosis, psoriasis, psoriatic arthritis			
VAPALIXIMAB VEDOLIZUMAB		AOC3 (VAP-1) integrin α4β7	autoimmune disorders Crohn's disease, ulcerative colitis			
VELTUZUMAB VEPALIMOMAB VISILIZUMAB	NUVION	CD20 AOC3 (VAP-1) CD3	non-Hodgkin's lymphoma inflammation Crohn's disease, ulcerative			
VOLOCIXIMAB		integrin α5β1	colitis			
VOTUMUMAB	HUMASPECT	tumor antigen CTAA16.88	colorectal tumors			
ZALUTUMUMAB	HUMAX- EGFR	EGFR	squamous cell carcinoma of the head and neck			
ZANOLIMUMAB	HUMAX-CD4	CD4	rheumatoid, arthritis, psoriasis, T-cell lymphoma			
ZIRALIMUMAB		CD147 (basigin)	autoimmune disorders			

CD5

In certain embodiments, amino acid substituted forms of PE, or fragments thereof, may be fused, conjugated, or 40 otherwise linked, without limitation, to naturally occurring normal or disease related molecules such as secreted, extracellular, intracellular, transmembrane, or cell-surface-bound molecules or fragments thereof (or non-naturally occurring variants and fragments thereof), such as without limitation: 45 ligands, receptors, receptor extracellular domains, cytokines, growth factors, cell signaling proteins, extracellular and intracellular enzymes, structural proteins, cell adhesion proteins and molecules, cluster of differentiation (CD) molecules, mitogens, cell division regulating molecules, cancer/ 50 tumor markers and antigens, et cetera. In certain embodiments, molecules which are normally transmembrane and cell-surface bound polypeptides may be fused or conjugated to amino acid substituted forms of PE as polypeptide fragments lacking at least their transmembrane domains or 55 polypeptide regions responsible for cell-surface binding.

ZOLIMOMAB

ARITOX

In certain embodiments, molecules may be fused or conjugated to amino acid substituted forms of PE wherein such molecules possess or retain the ability (even as fusion proteins or protein conjugates) to form multimeric complexes (such as hetero- and homopolymers including, but not limited to, dimers, trimers, tetramers, pentamers, hexamers, et cetera.)

In certain embodiments, amino acid substituted forms of PE, or fragments thereof, may be generated as in-frame 65 polypeptide fusion proteins with molecules (such as, but not limited to, those referenced above) wherein the PE moiety is

either an amino-terminal portion or a carboxyl-terminal portion of the fusion protein. Determination of which of these two configurations provides the desired results and/or biological activities may be determined by routine experimentation practiced by those skilled in the art.

In certain embodiments, amino acid substituted forms of PE, or fragments thereof, may be generated as fusion proteins wherein heterologous amino acid sequences (such as cell targeting sequences) are inserted within the amino acid substituted form of PE (i.e., heterologous amino acids are flanked at the amino terminus and at the carboxy terminus by PE amino acid sequences). An example of a non-amino acid substituted form of PE in such a configuration is demonstrated in U.S. Pat. No. 8,854,044 wherein a TGF- α polypeptide is incorporated at amino acid residues 607 to 604 within a "PE37" polypeptide sequence. See e.g., U.S. Pat. No. 8,854,044, FIG. 1.

Some examples of molecules which may be fused, conjugated, or otherwise linked to amino acid substituted forms of PE, include for example, but without limitation, those such as indicated in Table 2.

Table 2: Examples of Potential Compounds and Indications to which Amino Acid Substituted Forms of PE May Be Fused or Conjugated for Therapeutic Use

Note: The potential indications and nucleic acid and amino acid sequences shown in Table 2 (as well as

accession numbers listed) are presented for purposes of providing a few illustrative examples only. Thus, embodiments of the invention may or may not comprise these indications and sequences. Accordingly, it is envisioned that embodiments of the invention comprise other indication uses as well as other molecules and sequence variants (e.g., naturally occurring variants (such as allelic or polymorphic variants) and non-naturally occurring variants (such as genetically engi-

neered or mutated variants)) of these sequences wherein one or multiple amino acids are changed and/or wherein only a fragment or fragments of such sequences are fused or conjugated to amino acid substituted forms of PE. Hence, the examples shown in Table 2 should in no manner be considered limiting with respect to potential therapeutic indications or protein fusions and conjugates of amino acid modified forms of PE.

Example Molecule (Nucleotide Accession*) [Protein Accession**]	Potential Indications	Example Amino Acid Sequence
Mesothelin (NM_013404) [NP_037536]	Pancreatic cancer Ovarian cancer	MALPTARPLLGSCGTPALGSLLFLLFSLGWVQPS RTLAGETGQEAAPLDGVLANPPNISSLSPRQLLG FPCAEVSGLSTERVRELAVALAQKNVKLSTEQLR CLAHRLSEPPEDLDALPLDLLLFLNPDAFSGPQA CTRFFSRITKANVDLLPRGAPERQRLLPAALACW GVRGSLLSEADVRALGGLACDLPGRFVAESAEVL LPRLVSCPGPLDQDQQEAARAALQGGGPPYGPPS TWSVSTMDALRGLLPVLGQPIIRSIPQGIVAAWR QRSSRDPSWRQPERTILRPRFRREVEKTACPSGK KAREIDESLIFYKKWELEACVDAALLATQMDRVN AIPFTYEQLDVLKHKLDELYPQGYPESVIQHLGY LFLKMSPEDIRKWNVTSLETLKALLEVNKGHEMS PQAPRRPLPQVATLIDRFVKGRGQLDKDTLDTLT AFYPGYLCSLSPEELSSVPPSSIWAVRPQDLDTC DPRQLDVLYPKARLAFQNMMGSEYFVKIQSFLGG APTEDLKALSQQNVSMDLATFMKLRTDAVLPLTV AEVQKLLGPHVEGLKAEERHRPVRDWILRQRQDD LDTLGLGLQGGIPNGYLVLDLSMQEALSGTPCLL GPGPVLTVLALLLASTLA (SEQ ID NO: 167)
CD24 (NM_013230) [AAH64619]	Liver cancer Colorectal cancer Pancreatic cancer	MGRAMVARLGLGLLLLALLLPTQIYSSETTTGTS SNSSQSTSNSGLAPNPTNATTKAAGGALQSTASL FVVSLSLLHLYS (SEQ ID NO: 168)
CD22 (AB013007) [BAA36576]	Hairy Cell Leukemia Chronic Lymphocytic Leukemia Non-Hodgkin's Lymphoma	VRRAPLSEGPHSLGCYNPMMEDGISYTTLRFPEM NIPRTG (SEQ ID NO: 169)
CD25 a.k.a., Interleukin 2 receptor, alpha chain (NM_000417) [NP_000408]	Hodgkin's Lymphoma Hairy Cell Leukemia Chronic Lymphocytic Leukemia Cutaneous T-cell Lymphoma Adult T-cell leukemia	MDSYLLMWGLLTFIMVPGCQAELCDDDPPEIPHA TFKAMAYKEGTMLNCECKRGFRRIKSGSLYMLCT GNSSHSSWDNQCQCTSSATRNTTKQVTPQPEEQK ERKTTEMQSPMQPVDQASLPGHCREPPPWENEAT ERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKM THGKTRWTQPQLICTGEMETSQFPGEEKPQASPE GRPESETSCLVTTTDFQIQTEMAATMETSIFTTE YQVAVAGCVFLLISVLLLSGLTWQRRQRKSRRTI (SEQ ID NO: 170)
CD174 a.k.a., Lewis Y, galactoside 3 (4)-L-fucosyl- transferase (NM_000149) [NP_000140]	Bladder cancer Breast cancer Colorectal cancer Esophageal cancer Gastric cancer Lung cancer Pancreatic cancer	MDPLGAAKPQWPWRRCLAALLFQLLVAVCFFSYL RVSRDDATGSPRAPSGSSRQDTTPTRPTLLILLW TWPFHIPVALSRCSEMVPGTADCHITADRKVYPQ ADTVIVHHWDIMSNPKSRLPPSPRPQGQRWIWFN LEPPPNCQHLEALDRYFNLTMSYRSDSDIFTFYG WLEPWSGQPAHPPLNLSAKTELVAWAVSNWKPDS ARVRYYQSLQAHLKVDVYGRSHKPLPKGTMMETL SRYKFYLAFENSLHPDYITEKLWRNALEAWAVPV VLGPSRSNYERFLPPDAFIHVDDFQSPKDLARYL QELDKDHARYLSYFRWRETLRPRSFSWALDFCKA CWKLQQESRYQTVRSIAAWFT (SEQ ID NO: 171)
TPBG	•	MPGGCSRGPAAGDGRLRLARLALVLLGWVSSSSP TSSASSFSSSAPFLASAVSAOPPLPDOCPALCEC

a.k.a., oncofetal cancer

TSSASSFSSSAPFLASAVSAQPPLPDQCPALCEC

-continued

Example Molecule (Nucleotide Accession*) [Protein Accession**]	Potential Indications	Example Amino Acid Sequence
antigen 5T4, 5T4 oncofetal trophoblast glycoprotein (NM_006670) [CAA09930]	Renal carcinoma Pancreatic cancer	SEAARTVKCVNRNLTEVPTDLPAYVRNLFLTGNQ LAVLPAGAFARRPPLAELAALNLSGSRLDEVRAG AFEHLPSLRQLDLSHNPLADLSPFAFSGSNASVS APSPLVELILNHIVPPEDBRQNRSFEGMVVAALL AGRALQGLRRLELASNHFLYLPRDVLAQLPSLRH LDLSNNSLVSLTYVSFRNLTHLESLHLEDNALKV LHNGTLAELQGLPHIRVFLDNNPWVCDCHMADMV TWLKETEVVQGKDRLTCAYPEKMRNRVLLELNSA DLDCDPILPPSLQTSYVFLGIVLALIGAIFLLVL YLNRKGIKKWMHNIRDACRDHMEGYHYRYEINAD PRLTNLSSNSDV (SEQ ID NO: 172)
CD56 a.k.a., NCAM1, neural cell adhesion molecule 1 isoform 1 precursor (NM_000615) [NP_000606]	Small cell lung cancer Merkel cell carcinoma Ovarian cancer Neuroendocrine tumors Multiple Myeloma	MLQTKDLIWTLFFLGTAVSLQVDIVPSQGEISVG ESKFFLCQVAGDAKDKDISWFSPNGEKLTPNQQR ISVVWNDDSSSTLTIYNANIDDAGIYKCVVTGED GSESEATVNVKIFQKLMFKNAPTPQEFREGEDAV IVCDVVSSLPPTIIWKHKGRDVILKKDVRFIVLS NNYLQIRGIKKTDEGTYRCEGRILARGEINFKDI QVIVNVPPTIQARQNIVNATANLGQSVTLVCDAE GFPEPTMSWTKDGEQIEQEEDDEKYIFSDDSSQL TIKKVDKNDEAEYICIAENKAGEQDATIHLKVFA KPKITYVENQTAMELEEQVTLTCEASGDPIPSIT WRTSTRNISSEEKTLDGHNVVRSHARVSSLTLKS IQYTDAGEYICTASNTIGQDSQSMYLEVQYAPKL QGPVAVYTWEGNQVNITCEVFAYPSATISWFRDG QLLPSSNYSNIKIYNTPSASYLEVTPDSENDFGN YNCTAVNRIGQESLEFILVQADTPSSPSIDQVEP YSSTAQVQFDEPEATGGVPILKYKAEWRAVGEEV WHSKWYDAKEASMEGIVTIVGLKPETTYAVRLAA LNGKGLGEISAASEFKTQPVQGEPSAPKLEGQMG EDGNSIKVNLIKQDDGGSPIRHYLVRYRALSSEW KPEIRLPSGSDHVMLKSLDWNAEYEVYVAENQQ GKSKAAHFVFRTSAQPTAIPANGSPTSGLSTGAI VGILIVIFVLLLVVVDITCYFLNKCGLFMCIAVN LCGKAGPGAKGKDMEEGKAAFSKDESKEPIVEVR TEEERTPNHDGGKHTEPNETTPLTEPEKGPVEAK PECQETETKPAPAEVKTVPNDATQTKENESKA (SEQ ID NO: 173)
C-type lectin- like molecule-1 a.k.a., CLL-1 (AY547296) [AAT11783]	Acute myeloid leukemia	MWIDFFTYSSMSEEVTYADLQFQNSSEMEKIPEI GKFGEKAPPAPSHVWRPAALFLTLLCLLLLIGLG VLASMFHYTLKIEMKKMIKLQNISEELQRNISLQ LMSNMNISNKIRNLSTTLQTIATKLCRELYSKEQ EHKCKPCPRRWIWHKDSCYFLSDDVQTWQESKMA CAAQNASLLKINNKNALEFIKSQSRSYDYWLGLS PEEDSTRGMRVDNIINSSAWVIRNAPDLNNMYCG YINRLYVQYYHCTYKQRMICEKMANPVQLGSTYF REA (SEQ ID NO: 174)

*"Nuclectide Accession" refers to the NCBI Reference Sequence accession number associated with the corresponding nucleic acid sequence as found in the "Nuclectide" database provided for public access and searching (via the Internet) through the National Center for Biotechnology Information, U.S. National Library of Medicine (8600 Rockville Pike, Bethesda MD, 20894 USA (www.ncbi.nlm.nih.gov)).

***Protein Accession" refers to the NCBI Reference Sequence accession number associated with the corresponding amino acid sequence as found in the "Protein" database provided for public access and searching (via the Internet) through the National Center for Biotechnology Information, U.S. National Library of Medicine (8600 Rockville Pike, Bethesda MD, 20894
USA (www.ncbi.nlm.nih.gov)).

In one embodiment, the present invention includes isolated nucleic acids and methods of expressing nucleic acids encoding any of the herein-referenced modified forms of PE, including fusions, conjugates, and otherwise linked molecules; whether such forms are expressed from a single or 60 one more separate polynucleotide sequences; whether such polynucleotide sequences are expressed from a single or one

Expression Vectors

or more separate expression vectors.

In one embodiment, the present invention includes meth- 65 ods of making and using recombinant expression vectors to express nucleic acids encoding polypeptides comprising any

of the herein-referenced modified forms of PE, including fusions, conjugates, and otherwise linked molecules. Use of a wide variety of expression vectors are well-known and routinely used by those skilled in the art. A few examples of the types of expression vectors which may be used include, but are not limited to: derivatives of human or animal viruses (such as retrovirus, adeno-associated virus, pox, baculovirus, vaccinia, herpes simplex, Epstein-Barr, adenovirus, geminivirus, and caulimovirus vectors) and insect viruses (such as baculovirus); yeast vectors; bacteriophage vectors (e.g., bacteriophage lambda); plasmids; cosmids; artificial

chromosomes; liposomes; electrically charged lipids (cytofectins); DNA-protein complexes, and biopolymers.

Gene Delivery and Expression Systems

A wide variety of methods (i.e., gene delivery systems) are available and well-known to those of skill in the art; any of such methods may be used for introducing nucleic acids encoding modified forms of PE into a cell, tissue, or organism for in vitro, in vivo, in situ, or ex vivo expression. The methods referenced below represent examples of ways in which nucleic acid(s) encoding modified forms of PE may be introduced into a cell. These examples are in no way intended to limit the scope of that may be used for gene delivery and expression of modified forms of PE in cells, tissues, or organisms; these examples are presented to illustrate the many available methods.

-Viral-Based Delivery of Target Nucleic Acids-

Gene therapy based methods can be used to deliver (into a host cell, tissue or organism) target nucleic acids encoding modified forms of PE (and other polynucleotides, as needed, to allow expression of the same). As one example, poly-20 nucleotides operably encoding the target nucleic acid can be delivered to a tissue or organism either as "naked nucleic acid" or as part of an expression vector. The term vector includes for example, but is not limited to, vectors such as plasmid vectors, cosmid vectors, artificial chromosome vec- 25 tors, and viral vectors. Some examples of viral vectors include adenovirus, herpes simplex virus (HSV), alphavirus, simian virus 40, picomavirus, vaccinia virus, retrovirus, lentivirus, and adeno-associated virus. Vectors encoding modified forms of PE may be capable of replication in a cell 30 in which it is introduced, or it may be preferred that the vector is not capable of replication. Vectors encoding modified forms of PE may be capable of integration into the genomic DNA of a cell (and subsequent expression therefrom), or it may be preferred that the vector is not capable 35 of integrating into the host genome. An example of a vector that can integrate into the genomic DNA of a cell is a retroviral vector, in which an integrase enzyme mediates integration of the retroviral vector sequences. A vector may also contain transposon sequences that facilitate integration 40 of the coding region into the genomic DNA of a host cell. Liposomes represent another manner in which target DNA may be delivered to a subject.

Selection of a vector depends upon a variety of desired characteristics in the resulting construct, such as a selection 45 marker, vector replication rate, type of target host cell, species of host organism, desired duration of protein expression. An expression vector optionally includes expression control sequences operably linked to the coding sequence such that the coding region is expressed in the cell. The 50 invention is not limited by the use of any particular promoter, and a wide variety is known. Promoters act as regulatory signals that bind RNA polymerase in a cell to initiate transcription of a downstream (3' direction) operably linked coding sequence. The promoter used in the invention 55 may be a constitutive or an inducible promoter. It can be, but need not be, heterologous with respect to the cell to which it is introduced.

In certain embodiments, adenovirus expression vectors can be used to deliver (into a host cell, tissue or organism) 60 target nucleic acids encoding modified forms of PE (and other polynucleotides, as needed, to allow expression of the same). The terms "adenovirus expression vector" is meant to include those constructs containing nucleic acid sequences sufficient to (a) support packaging of the construct and (b) to 65 ultimately express a recombinant gene construct that has been inserted therein. In contrast to retroviruses, use of

52

adenovirus vectors does not result in chromosomal integration because adenovirus DNA replicates in an episomal manner. Moreover, adenoviruses are considered to be structurally stable with no genome rearrangement occurring even after extensive virus reproduction and amplification. Methods of constructing and using adenovirus vectors as gene delivery systems are well-known to those of skill in the art.

In certain embodiments, adeno-associated virus (AAV) expression vectors can be used to deliver (into a host cell, tissue or organism) target nucleic acids encoding modified forms of PE (and other polynucleotides, as needed, to allow expression of the same). AAV may be desirable for a number or reasons; for example, because AAV vectors exhibit a high frequency of integration, can infect nondividing cells, and have a broad host range. AAV is a dependent parvovirus in that it requires coinfection with another virus (either adenovirus or a member of the herpes virus family) to undergo a productive infection in cultured cells. In the absence of coinfection with helper virus, the wild-type AAV genome integrates through its ends into a human chromosome where it resides as a latent provirus. When a cell containing latent AAV provirus is superinfected with a helper virus, the AAV genome is "rescued" from the chromosome and a normal productive infection is established. Methods of constructing and using AAV vectors as gene delivery systems are wellknown to those of skill in the art.

In certain embodiments, retrovirus expression vectors can be used to deliver (into a host cell, tissue or organism) target nucleic acids encoding modified forms of PE (and other polynucleotides, as needed, to allow expression of the same). Retroviruses are a group of single-stranded RNA viruses characterized by the ability to convert their genomic RNA to double-stranded DNA in infected cells through a reverse-transcription process. The resulting DNA stably integrates into cellular chromosomes as a provirus and directs synthesis of viral proteins. Retroviral integration results in the retention of viral gene sequences in the recipient cell and in its descendants. Retroviral vectors are able to infect a broad variety of cell types. Methods of constructing and using retroviruses as gene delivery systems are well-known to those of skill in the art.

Many other expression vectors can also be used to deliver (into a host cell, tissue or organism) target nucleic acids encoding modified forms of PE (and other polynucleotides, as needed, to allow expression of the same). For example, vectors derived from viruses such as vaccinia viruses, herpesviruses, equine encephalitis viruses, hepatitis viruses and lentiviruses can be used. Methods of constructing and using viral expression vectors as gene delivery systems are well-known to those of skill in the art. The examples of such vectors referenced herein are not intended to be limiting with respect to the means by which modified forms of PE may be delivered and expressed in various host cells, tissues, or organisms.

—Non-Viral Delivery of Modified Target Nucleic Acids—

In addition to viral delivery of modified target nucleic acid, the following are additional methods of recombinant gene delivery can be used to deliver (into a host cell, tissue or organism) target nucleic acids encoding modified forms of PE (and other polynucleotides, as needed, to allow expression of the same). Methods of constructing and using non-viral gene delivery systems are well-known to those of skill in the art. See, for example, Al-Dosari et al., "Nonviral gene delivery: principle, limitations, and recent progress," *AAPS Journal*, 11(4):671-681 (2009); and references cited therein.

In certain embodiments, electroporation can be used to deliver (into a host cell, tissue or organism) target nucleic acids encoding modified forms of PE (and other polynucleotides, as needed, to allow expression of the same). Methods of using electroporation are well-known to those of skill in the art. See, for example, Bodles-Brakhop et al., "Electroporation for the delivery of DNA-based vaccines and immunotherapeutics: current clinical developments," Mol. Ther., 17(4):585-592 (2009); and references cited therein. See also, 10 Golzio et al., "Observations of the mechanisms of electromediated DNA uptake-from vesicles to tissues," Curr Gene Ther., 10(4):256-266 (2010); and references cited therein. See also, Andre et al., "Nucleic acids electrotransfer in vivo: mechanisms and practical aspects," Curr Gene Ther., 10(4): 267-280 (2010); and references cited therein. See also, Wells, "Electroporation and ultrasound enhanced non-viral gene delivery in vitro and in vivo," Cell Biol Toxicol., 26(1):21-28 (2010); and references cited therein.

In certain embodiments, particle bombardment can be used to deliver (into a host cell, tissue or organism) target nucleic acids encoding modified forms of PE (and other polynucleotides, as needed, to allow expression of the same). This method depends on the ability to accelerate 25 nucleic acid-coated microprojectiles to a sufficient velocity to allow them to pierce cell membranes, thereby delivering nucleic acid "payloads," without killing them. Some typical microprojectiles consist of biologically inert substances such as tungsten, platinum, and gold beads. Methods of 30 using particle bombardment are well-known to those of skill in the art.

See, for example, Klein et al., "Particle bombardment: a universal approach for gene transfer to cells and tissues," *Curr. Opin. Biotechnol.*, 4(5):583-590 (1993); and references cited therein.

In certain embodiments, a variety of methods incorporating calcium phosphate co-precipitation can be used to deliver (into a host cell, tissue or organism) target nucleic acids encoding modified forms of PE (and other polynucleotides, as needed, to allow expression of the same). Methods of using calcium phosphate co-precipitation are well-known to those of skill in the art. See, for example, Uskoković et al., "Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents," *J.* Biomed. Mater. Res. B Appl. Biomater, 96(1):152-191 (2011); and references cited therein. See also, Colosimo et al., "Transfer and expression of foreign genes in mammalian cells," *Biotechniques*, 29(2):314-8, 320-322 (2000); and references cited therein.

In certain embodiments, microinjection and sonication methods can be used to deliver (into a host cell, tissue or organism) target nucleic acids encoding modified forms of PE (and other polynucleotides, as needed, to allow expression of the same). Methods of using microinjection and sonication are well-known to those of skill in the art. See, for example, Rochlitz et al., "Gene therapy of cancer," *Swiss Med. Wkly.*, 131(1-2):4-9 (2001); and references cited therein. See also, Donnelly et al., "Microneedle-based drug delivery systems: microfabrication, drug delivery, and 60 safety," *Drug Deliv.*, 17(4): 187-207 (2010); and references cited therein. See also, Miller et al., "Sonoporation: mechanical DNA delivery by ultrasonic cavitation", *Somat. Cell Mol. Genet.*, 27(1-6): 115-34 (2002); and references cited therein.

In certain embodiments, liposomes and lipid formulations can be used to deliver (into a host cell, tissue or organism)

target nucleic acids encoding modified forms of PE (and other polynucleotides, as needed, to allow expression of the same). Liposomes are vesicular structures characterized by a phospholipid bilayer membrane and an inner aqueous medium. Multilamellar liposomes have multiple lipid layers separated by aqueous medium. They form spontaneously when phospholipids are suspended in an excess of aqueous solution. An example of a commonly used, commercially available lipid formulation is Lipofectamine (Gibco BRL). Methods of using liposomes and lipid formulations to deliver nucleic acids to cells, tissues and organisms are well-known to those of skill in the art. See, for example, Xiong et al., "Cationic liposomes as gene delivery system: transfection efficiency and new application," Pharmazie, 66(3):158-64 (2011); and references cited therein. See also, Pichon et al., "Chemical vectors for gene delivery: uptake and intracellular trafficking," Curr Opin Biotechnol., 21(5): 640-645 (2010); and references cited therein. See also, Pathak et al., "Recent trends in non-viral vector-mediated gene delivery," Biotechnol J., 4(11): 1559-1572 (2009).

Expression of Modified Forms of PE Via Gene Switch Modulation Systems

Expression of modified forms of PE, including fusions, conjugates, and otherwise linked molecules, may be expressed in host cells, tissues, and organisms using gene switch expression systems. Some examples, without limitation, of such gene expression systems, and genetically engineered cells comprising gene switch expression systems, which can be used to express polynucleotides and polypeptides of the present invention, are described in the following publications; each of which are hereby incorporated by reference herein:

WO 2009/045370 (PCT/US2008/011270);

WO 2009/025866 (PCT/US2008/010040); WO 2002/ 066614 (PCT/US/2002/005706);

WO 2008/073154 (PCT/US2007/016747); WO 2002/ 066613 (PCT/US2002/005090);

WO 2005/108617 (PCT/US2005/015089); WO 2002/ 029075 (PCT/US2001/030608);

WO 2003/0/27289 (PCT/US2002/005026); WO 2001/ 070816 (PCT/US2001/090500); WO 2002/066615 (PCT/US2002/005708); WO 2009/

048560 (PCT/US2008/011563); WO 2003/027266 (PCT/US/2002/05234); WO 2010/

042189 (PCT/US2009/005510); and

WO 2002/066612 (PCT/US2002/005090); WO 2011/119773 (PCT/US2011/029682).

For purposes of expressing polynucleotides and polypeptides under control of a gene switch mechanism, the term "gene switch" refers to the combination of a response element associated with a promoter, and a ligand-dependent transcription factor-based system which, in the presence of one or more ligands, modulates the expression of a gene into which the response element and promoter are incorporated. Stated otherwise, a "gene switch" refers to a peptide, protein or polypeptide complex that functions to (a) bind an activating ligand, and (b) regulate the transcription of a gene of interest in a ligand-dependent fashion.

In one embodiment, the polynucleotide encoding a gene switch is a recombinant polynucleotide, i.e., a polynucleotide, that has been engineered, by molecular biological manipulation, to encode the gene switch. In another embodiment, the recombinant polynucleotide is a synthetic polynucleotide.

As used herein with respect to gene switch regulation systems, the term "dimerizes with the ligand binding domain that binds an activating ligand" refers to a selective protein-protein interaction that is induced by the presence of activating ligand.

As used herein, the term "ligand binding domain that binds an activating ligand" refers to an amino acid sequence that selectively binds an activating ligand. In the methods disclosed herein, an activating ligand binds to a ligand binding domain, e.g., an ecdysone receptor ligand binding 10 domain, that is part of a ligand-dependent transcriptional activation complex that regulates the expression of a polynucleotide sequence that encodes a gene of interest. Hence, the expression of the gene of interest is regulated in a ligand-dependent fashion.

The term "ecdysone receptor-based," with respect to a gene switch, refers to a gene switch comprising at least a functional part of a naturally occurring or synthetic ecdysone receptor ligand binding domain and which regulates gene expression in response to a ligand that binds to the 20 ecdysone receptor ligand binding domain.

As used herein, "selective binding" of an activating ligand to a ligand binding domain in a gene switch means that the ligand has an EC50 of about 700 nanomolar (nM), 650 nM, 600 nM, 550 nM, 500 nM, 450 nM, 400 nM, 350 nM, 300 25 nM, 250 nM, 225 nM, 200 nM, 175 nM, 150 nM, 125 nM, 100 nM, 95 nM, 90 nM, 85 nM, 80 nM, 75 nM 70 nM, 65 nM, 60 nM, 55 nM, 50 nM, 45 nM, 40 nM, 35 nM, 30 nM, 25 nM, 20 nM, 15 nM, 10 nM, 9 nM, 8 nM, 7 nM, 6 nM, 5 nM, 4 nM, 3 nM, 2 nM or 1 nM, or less, in a gene switch assay.

As used herein, "EC50" is the "half maximal effective concentration," which refers to the concentration of an activating ligand that induces a gene switch-regulated change in expression of a polynucleotide encoding an gene 35 of interest (e.g., modified forms of PE, including fusions, conjugates, et cetera), that is halfway between the baseline level of expression and the maximum level of expression after a specified exposure time. Examples of cellular assays for measuring gene switch-regulated gene expression are 40 well known to those of skill in the art. See, for example, Karzenowski et al., *BioTechniques* 39: 191-200 (2005).

In one embodiment, the ligand binding domain that binds an activating ligand, e.g., an ecdysone receptor ligand binding domain, dimerizes with another ligand binding domain, 45 e.g., a retinoid X receptor ligand binding domain, to form a protein-protein complex.

In one embodiment, the expression of the gene of interest is regulated by an activating ligand in an on/off fashion that is independent of the concentration or dosage of an activating ligand. In another embodiment, the expression of the gene of interest is regulated by an activating ligand in a concentration (or dosage)-dependent fashion, i.e., there is a dose-response relationship between the concentration (or dosage) of an activating ligand and the level of gene 55 expression of the gene of interest. See, e.g., US Patent Publication No. 2009/0123441 (see also, WO 2009/048560 (PCT/USUS2008/011563)).

The term "operably linked" refers to the association of polynucleotide sequences on a single polynucleotide so that 60 the function of one is affected by the other. For example, a promoter is operably linked with a coding sequence when it is capable of affecting the expression of that coding sequence (i.e., that the coding sequence is under the transcriptional control of the promoter). Coding sequences can 65 be operably linked to regulatory sequences in sense or antisense orientation.

56

In one embodiment, an activating ligand, or a composition thereof, is administered to a subject orally. In another embodiment, an activating ligand, or a composition thereof, is administered to a subject parenterally. In another embodiment, an activating ligand, or a composition thereof, is administered subcutaneously, intramuscularly, intravenously, intraperitoneally, transdermally, or intratumorally.

In one embodiment, the ligand binding domain in the gene switch is a Group H nuclear receptor ligand binding domain, or a mutant thereof that binds an activating ligand. In another embodiment, the Group H nuclear receptor ligand binding domain is selected from the group consisting of an ecdysone receptor ligand binding domain, a ubiquitous receptor ligand binding domain, an orphan receptor-1 ligand binding domain, an NER-1 ligand binding domain, a receptor-interacting protein-15 ligand binding domain, a liver X receptor-3 ligand binding domain, a steroid hormone receptor-like protein ligand binding domain, a liver X receptor ligand binding domain, a liver X receptor ligand binding domain, a farnesoid X receptor ligand binding domain, a receptor-interacting protein-14 ligand binding domain, and a farnesol receptor ligand binding domain ligand binding domain, or a mutant thereof that binds an activating ligand.

In another embodiment, the Group H nuclear receptor ligand binding domain is an ecdysone receptor ligand binding domain, or a mutant thereof that binds an activating ligand. In another embodiment, the ecdysone receptor ligand binding domain is selected from the group consisting of an Arthropod ecdysone receptor ligand binding domain a Lepidopteran ecdysone receptor ligand binding domain, a Dipteran ecdysone receptor ligand binding domain, an Orthopteran ecdysone receptor ligand binding domain, a Homopteran ecdysone receptor ligand binding domain and a Hemipteran ecdysone receptor ligand binding domain, a spruce budworm Choristoneura fumiferana ecdysone receptor ligand binding domain, a beetle Tenebrio molitor ecdysone receptor ligand binding domain, a Manduca sexta ecdysone receptor ligand binding domain, a Heliothies virescens ecdysone receptor ligand binding domain, a midge Chironomus tentans ecdysone receptor ligand binding domain, a silk moth Bombyx mori ecdysone receptor ligand binding domain, a squinting bush brown Bicyclus anynana ecdysone receptor ligand binding domain, a buckeye Junonia coenia ecdysone receptor ligand binding domain, a fruit fly Drosophila melanogaster ecdysone receptor ligand binding domain, a mosquito Aedes aegypti ecdysone receptor ligand binding domain, a blowfly Lucilia capitata ecdysone receptor ligand binding domain, a blowfly Lucilia cuprina ecdysone receptor ligand binding domain, a blowfly Calliphora vicinia ecdysone receptor ligand binding domain, a Mediterranean fruit fly Ceratitis capitata ecdysone receptor ligand binding domain, a locust Locusta migratoria ecdysone receptor ligand binding domain, an aphid Myzus persicae ecdysone receptor ligand binding domain, a fiddler crab Celuca pugilator ecdysone receptor ligand binding domain, an ixodid tick Amblyomma americanum ecdysone receptor ligand binding domain, a whitefly Bamecia argentifoli ecdysone receptor ligand binding domain, a leafhopper Nephotetix cincticeps ecdysone receptor ligand binding domain, or a mutant thereof that binds An activating ligand.

In another embodiment, the ecdysone receptor ligand binding domain is a spruce budworm *Choristoneura fumiferana* ecdysone receptor ligand binding domain, for which the amino acid sequence is:

(SEQ ID NO: 1) Leu Thr Ala Asn Gln Gln Phe Leu Ile Ala Arg Leu Ile Trp Tyr Gln Asp Gly Tyr Glu Gln Pro Ser Asp Glu Asp Leu Lys Arg Ile Thr Gln Thr Trp Gln Gln Ala Asp Asp Glu Asn Glu Glu Ser Asp Thr Pro Phe Arg GlnIle Thr Glu Met Thr Ile Leu Thr Val Gln Leu Ile Val Glu Phe Ala Lys Gly Leu Pro Gly Phe Ala Lys Ile Ser Gln Pro Asp Gln Ile Thr Leu Leu Lys Ala Cys Ser Ser Glu Val Met Met Leu Arg Val Ala Arg Arg Tvr Asp Ala Ala Ser Asp Ser Val (position 107) Leu Phe Ala Asn Asn Gln Ala Tyr Thr Arq Asp Asn Tyr Arg Lys Ala Gly Met ala Tyr (position 127) Val Ile Glu Asp Leu Leu His Phe Cys Arg Cys Met Tyr Ser Met ala Leu Asp Asn Ile His Tyr Ala Leu Leu Thr Ala Val Val Ile Phe Ser Asp Arq Pro Gly Leu Glu Gln Pro Gln Leu Val Glu Glu Ile Gln Arg Tyr Tyr Leu Asn Thr Leu Arg Ile Tyr Ile Leu Asnw Gln Leu Ser Gly Ser Ala Arg Ser Ser Val Ile Tyr Gly Lys Ile Leu Ser Ile Leu Ser Glu Leu Arg Thr Leu Gly Met Gln Asn Ser Asn Met Cys Ile Ser Leu Lys Leu Lys Asn Arg Lys Leu Pro Pro Phe Leu Glu Glu Ile Trp Asp Val,

which is also set forth as SEQ NO: 1 in U.S. Patent Publication No. 2006/0100416 A1 (see also, WO 2002/ ³⁰ 066612 (PCT/US2002/005090)).

Exemplary ecdysone receptor ligand binding domains include those disclosed, for example, in U.S. Pat. No. 7,935,510 (see also, WO 2003/0/27289 (PCT/US2002/005026)); U.S. Pat. No. 7,919,269 (see also, WO 2003/027266 (PCT/US/2002/05234)); U.S. Pat. No. 7,563,879 (see also, WO 2003/0/27289 (PCT/US2002/005026)); and in U.S. Patent Publication No. 2006/0100416 A1 (see also, WO 2002/066612 (PCT/US2002/005090)), each of which is hereby incorporated by reference in its entirety.

In one embodiment, the ecdysone receptor ligand binding domain is a mutant of an ecdysone receptor ligand binding domain that binds the activating compound. In another embodiment, the ecdysone receptor ligand binding domain 45 is a mutant of the spruce budworm *Choristoneura fumiferana* ecdysone receptor ligand binding domain that binds the activating compound.

In one embodiment, the gene switch comprises a *Choristoneura fumiferana* ecdysone receptor ligand binding 50 domain that is engineered to contain the mutations V107I and Y127E of the *Choristoneura fumiferana* ecdysone receptor sequence as set forth in SEQ ID NO:1 of U.S. Patent Publication No. 2006/0100416 (see also, WO 2002/066612 (PCT/US2002/005090)). The term "V107I" means 55 that the valine amino acid residue at position 107 (a as set forth in SEQ ID NO:1 of U.S. Patent Publication No. 2006/0100416) is changed to isoleucine. The term "Y127E" means that the tyrosine amino acid residue at position 127 (as set forth in SEQ ID NO:1 of U.S. Patent Publication No. 60 2006/0100416) is changed to glutamate.

Exemplary mutant ecdysone receptor ligand binding domains are disclosed, for example, in US 2006/0100416 A1 (see also, WO 2002/066612 (PCT/US2002/005090)) and U.S. Pat. No. 7,935,510 (Pub. No. 2005/0266457) (see also, 65 WO 2005/108617 (PCT/US2005/015089)) each of which is incorporated by reference in its entirety.

In one embodiment, the gene switch comprises a ligand binding domain that dimerizes with the ligand binding domain that binds an activating ligand. In one embodiment, the ligand binding domain that dimerizes with the ligand binding domain that binds an activating ligand is a Group B nuclear receptor ligand binding domain. In another embodiment, the Group B nuclear receptor ligand binding domain is selected from the group consisting of a retinoid X receptor ligand binding domain, an H-2 region II binding protein ligand binding domain, a nuclear receptor co-regulator-1 ligand binding domain, an ultraspiracle protein ligand binding domain, a 2Cl nuclear receptor ligand binding domain, and a chorion factor 1 ligand binding domain. In another embodiment, a ligand binding domain that dimerizes with the ligand binding domain that binds an activating ligand is not an ecdysone receptor ligand binding domain.

In one embodiment, the ligand binding domain that dimerizes with the ligand binding domain that binds an activating ligand is a retinoic X receptor ligand binding domain. In another embodiment, the retinoic X receptor ligand binding domain is a vertebrate retinoic X receptor ligand binding domain. In another embodiment, the retinoic X receptor ligand binding domain is a $Homo\ sapiens$ retinoic X receptor ligand binding domain. In another embodiment, the retinoic X receptor ligand binding domain is a retinoic X receptor c isoform. In another embodiment, the retinoic X receptor ligand binding domain is a retinoic X receptor

In another embodiment, the retinoic X receptor ligand binding domain is an invertebrate retinoic X receptor ligand binding domain. In another embodiment, the invertebrate retinoic X receptor ligand binding domain is a *Locusta migratoria* retinoic X receptor ligand binding domain.

In another embodiment, the invertebrate retinoic X receptor ligand binding domain is a non-Lepidopteran, non-Dipteran retinoic X receptor ligand binding domain.

In one embodiment, the retinoid receptor ligand binding domain is a vertebrate retinoid X receptor ligand binding domain, an invertebrate retinoid X receptor ligand binding domain, an ultraspiracle protein ligand binding domain, or a chimeric retinoid X receptor ligand binding domain.

In one embodiment, the chimeric retinoid X receptor ligand binding domain comprises two polypeptide fragments, wherein the first polypeptide fragment is from a vertebrate retinoid X receptor ligand binding domain, an invertebrate retinoid X receptor ligand binding domain, or an ultraspiracle protein ligand binding domain, and the second polypeptide fragment is from a different vertebrate retinoid X receptor ligand binding domain, a different invertebrate retinoid X receptor ligand binding domain, or a different ultraspiracle protein ligand binding domain.

In another embodiment, the chimeric retinoid X receptor ligand binding domain is one that is disclosed in U.S. Pat. No. 7,531,326, which is hereby incorporated by reference in its entirety.

In another embodiment, the first polypeptide fragment of the chimeric retinoid X receptor ligand binding domain comprises helices 1-6, helices 1-7, helices 1-8, helices 1-9, helices 1-10, helices 1-11, or helices 1-12 of a first species of retinoid X receptor, and the second polypeptide fragment 25 of the chimeric retinoid X receptor ligand binding domain comprises helices 7-12, helices 8-12, helices 9-12, helices 10-12, helices 11-12, helix 12, or F domain of a second species of retinoid X receptor, respectively.

In another embodiment, the first polypeptide fragment of 30 the chimeric retinoid X receptor ligand binding domain comprises helices 1-6 of a first species RXR according to the disclosure, and the second polypeptide fragment of the chimeric retinoid X receptor ligand binding domain comprises helices 7-12 of a second species of retinoid X receptor.

In another embodiment, the first polypeptide fragment of the chimeric retinoid X receptor ligand binding domain comprises helices 1-7 of a first species retinoid X receptor according to the disclosure, and the second polypeptide 40 fragment of the chimeric retinoid X receptor ligand binding domain comprises helices 8-12 of a second species retinoid X receptor.

In another embodiment, the first polypeptide fragment of the chimeric retinoid X receptor ligand binding domain 45 comprises helices 1-8 of a first species of retinoid X receptor, and the second polypeptide fragment of the chimeric retinoid X receptor ligand binding domain comprises helices 9-12 of a second species of retinoid X receptor.

In another embodiment, the first polypeptide fragment of 50 the chimeric retinoid X receptor ligand binding domain comprises helices 1-9 of a first species of retinoid X receptor, and the second polypeptide fragment of the chimeric retinoid X receptor ligand binding domain comprises helices 10-12 of a second species of retinoid X receptor. 55

In another embodiment, the first polypeptide fragment of the chimeric retinoid X receptor ligand binding domain comprises helices 1-10 of a first species of retinoid X receptor, and the second polypeptide fragment of the chimeric retinoid X receptor ligand binding domain comprises 60 helices 11-12 of a second species of retinoid X receptor.

In another embodiment, the first polypeptide fragment of the chimeric retinoid X receptor ligand binding domain comprises helices 1-11 of a first species of retinoid X receptor, and the second polypeptide fragment of the chimeric retinoid X receptor ligand binding domain comprises helix 12 of a second species of retinoid X receptor.

60

In another preferred embodiment, the first polypeptide fragment of the chimeric retinoid X receptor ligand binding domain comprises helices 1-12 of a first species of retinoid X receptor, and the second polypeptide fragment of the chimeric retinoid X receptor ligand binding domain comprises an F domain of a second species of retinoid X receptor.

In one embodiment, the first polypeptide fragment in the chimeric retinoid X receptor ligand binding domain is human retinoid X receptor sequence, and the second polypeptide fragment in the chimeric retinoid X receptor ligand binding domain is invertebrate retinoid X receptor sequence. In another embodiment, the invertebrate retinoid X receptor sequence is *Locusta migratoria* retinoid X receptor sequence.

In another embodiment, the first polypeptide fragment of the chimeric retinoid X receptor ligand binding domain comprises helices 1-8 of a human retinoid X receptor, and the second polypeptide fragment of the chimeric retinoid X receptor ligand binding domain comprises helices 9-12 of *Locusta migratoria* retinoid X receptor.

In one embodiment, the gene switch further comprises a DNA binding domain ("DBD"). In another embodiment, the DBD is selected from the group consisting of a GAL4 DBD, a LexA DBD, a transcription factor DBD, a steroid/thyroid hormone nuclear receptor superfamily member DBD, a bacterial LacZ DBD, and a yeast DBD.

In one embodiment, the gene switch further comprises a transactivation domain ("TD"). In another embodiment, the transactivation domain is selected from the group consisting of a VP16 TD, a GAL4 TD, an NF-κB TD, a BP64 TD, and a B42 acidic TD.

In one embodiment, a DNA binding domain, the ligand binding domain that binds an activating ligand, a ligand binding domain that dimerizes with the ligand binding domain that binds an activating ligand, and a transactivation domain are encoded by polynucleotide sequences that are contained in the same polynucleotide.

In another embodiment, a DNA binding domain, a ligand binding domain that binds an activating ligand, a ligand binding domain that dimerizes with the ligand binding domain that binds an activating ligand, and a transactivation domain are encoded by polynucleotide sequences that are contained in two or more separate polynucleotide sequences.

In another embodiment, a DNA binding domain, a ligand binding domain that binds an activating ligand, a ligand binding domain that dimerizes with the ligand binding domain that binds an activating ligand, and a transactivation domain are encoded by polynucleotide sequences that are contained in two separate polynucleotide sequences.

In another embodiment, a DNA binding domain and a ligand binding domain that binds an activating ligand are encoded by polynucleotide sequences that are contained in a first polynucleotide sequence, and a ligand binding domain that dimerizes with the ligand binding domain that binds an activating ligand and a transactivation domain are encoded by polynucleotide sequences that are contained in a second polynucleotide sequence.

In another embodiment, a DNA binding domain and a ligand binding domain that dimerizes with the ligand binding domain that binds an activating ligand are encoded by polynucleotide sequences that are contained in a first polynucleotide sequence, and a ligand binding domain that binds an activating ligand and a transactivation domain are encoded by polynucleotide sequences that are contained in a second polynucleotide sequence.

In embodiments in which one or more of the DNA binding domain, a ligand binding domain that binds an activating ligand, a ligand binding domain that dimerizes with the ligand binding domain that binds an activating ligand, and a transactivation domain are encoded by polynucleotide 5 sequences that are contained in one or more separate polynucleotide sequences, then the one or more separate polynucleotide sequences are operably linked to one or more separate promoters. In another embodiment, the one or more separate polynucleotide sequences are operably linked to 10 one or more separate enhancer elements. In another embodiment, the promoter(s) and/or the enhancer(s) are constitutively active. In another embodiment, the promoter(s) and/or the enhancer(s) are tissue specific promoters and/or enhanc-

In one embodiment, the gene switch comprises a DNA binding domain, an ecdysone receptor ligand binding domain, a ligand binding domain that dimerizes with the ecdysone receptor ligand binding domain, and a transactivation domain.

In another embodiment, the gene switch comprises a DNA binding domain, an ecdysone receptor ligand binding domain, a retinoid X receptor ligand binding domain, and a transactivation domain.

In another embodiment, the gene switch comprises a 25 DNA binding domain, an ecdysone receptor ligand binding domain, a chimeric vertebrate/invertebrate retinoid X receptor ligand binding domain, and a transactivation domain.

In another embodiment, the gene switch comprises a GAL4 DNA binding domain, a Choristoneura fumiferana 30 ecdysone receptor ligand binding domain that is engineered to contain the mutations V107I and Y127E of the Choristoneura fumiferana ecdysone receptor sequence set forth in SEQ ID NO:1, a chimeric Homo sapiens/Locusta migratoria retinoid X receptor ligand binding, and a VP16 transactiva- 35

In another embodiment, the host cell further comprises a polynucleotide encoding a peptide, protein or polypeptide whose expression is regulated by the gene switch. A proto the polynucleotide encoding a peptide, protein or polypeptide whose expression is regulated by the gene switch.

In another embodiment, the polynucleotide encoding a peptide, protein or polypeptide whose expression is regulated by the gene switch is contained in the same polynucle- 45 otide as a polynucleotide that encodes one or more of a DNA binding domain, the ligand binding domain that binds an activating ligand, a ligand binding domain that dimerizes with the ligand binding domain that binds an activating ligand, and a transactivation domain. Such constructs are 50 disclosed, for example, in U.S. Patent Publication No. 2009/0123441 (see also, WO 2009-048560 USUS2008/011563)).

In another embodiment, the polynucleotide encoding a peptide, protein or polypeptide whose expression is regu- 55 lated by the gene switch is contained in a different nucleic acid molecule than a nucleic acid molecule that encodes one or more of a DNA binding domain, the ligand binding domain that binds an activating ligand, a ligand binding domain that dimerizes with the ligand binding domain that 60 binds an activating ligand, and a transactivation domain.

In one embodiment, the gene switch is more sensitive to an activating ligand than to a steroid hormone. In another embodiment, the gene switch is more sensitive to an activating ligand than to another diacylhydrazine compound.

The sensitivity of a gene switch to an activating ligand, relative to another ligand, can readily be determined in an in 62

vitro assay, for example, an in vitro assay that employs a reporter gene, such as firefly luciferase. Examples of such in vitro assays are well known to those of ordinary skill in the art. See, for example, Karzenowski et al., *BioTechniques* 39: 191-200 (2005).

In one embodiment, the polynucleotide encoding the gene switch is contained in a vector. In one embodiment, the vector selected from the group consisting of a plasmid, an expression vector, a replicon, a phage vector, a cosmid, a viral vector, a liposome, an electrically charged lipid (e.g., a cytofectin), a DNA-protein complex, and a biopolymer.

In another embodiment, the vector is a retroviral vector. In another embodiment, the vector is selected from the group consisting of an adeno-associated viral vector, a pox viral vector, a baculoviral vector, a vaccinia viral vector, a herpes simplex viral vector, an Epstein-Barr viral vector, an adenoviral vector, a gemini viral vector, and a caulimo viral vector.

In one embodiment, a composition of the invention comprises one or more polynucleotides that encode two or more 20 orthogonal gene switches. Two or more individually operable gene regulation systems are said to be "orthogonal" when (a) modulation of each of the given gene switches by its respective ligand results in a measurable change in the magnitude of expression of the gene that is regulated by that gene switch, and (b) the change is statistically significantly different than the change in expression of all other gene switches that are in the host cell. In one embodiment, regulation of each individually operable gene switch system effects a change in gene expression at least 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, 20-fold, 50-fold, 70-fold, 100-fold, 200-fold, 300 fold, 400-fold or 500-fold greater than all of the other operable gene switches in the host cell. Nonlimiting examples of orthogonal gene switch systems are set forth in U.S. Pat. No. 8,105,825 (Publication No. US 2002/ 0110861 A1).

As used herein, an "activating ligand" is a compound that binds selectively to the ligand binding domain of a gene

In one embodiment, the activating ligand is administered moter that binds the gene switch complex is operably linked 40 to the subject within an hour of the time at which the priming dosage is administered to the subject. In another embodiment, the activating ligand is administered to the subject within about 24, 48, 96, 120, 144 or 168 hours of the time at which the priming dosage is administered to the subject. In another embodiment, the activating ligand is administered to the subject within about 1, 2, 3, 4 or 5 weeks of the time at which the priming dosage is administered to the subject.

> In one embodiment, the activating ligand is administered to the subject within an hour of the time at which the first of the at least one boosting dosage is administered to the subject. In another embodiment, the activating ligand is administered to the subject within about 24, 48, 96, 120, 144 or 168 hours of the time at which the first of the at least one boosting dosage is administered to the subject. In another embodiment, the activating ligand is administered to the subject within about 1, 2, 3, 4 or 5 weeks of the time at which the first of the at least one boosting dosage is administered to the subject.

> In another embodiment, a composition of the invention is contained within a container. In one embodiment, the container is a vial. In another embodiment the container is a multiple-use vial. In another embodiment, the container displays an expiration date for the composition. In another embodiment, the container contains instructions for using the composition.

> In one embodiment, a composition of the invention is a unit dosage composition. In one embodiment, a unit dosage

composition is a composition that is manufactured to supply a single dosage of the composition of the invention. In another embodiment, the unit dosage composition is manufactured to provide more than one measured dosages of the composition of the invention.

The present application also provides an article of manufacture comprising more than one of the unit dosage compositions of the invention. In one embodiment, the article of manufacture is a container. In another embodiment, the article of manufacture is a box. In another embodiment, the article of manufacture displays an expiration date for the unit dosage composition.

The present invention also provides a kit comprising more than one of the composition or unit dosage of the present invention. In one embodiment, the kit displays an expiration 15 date for the composition or unit dosage. In another embodiment, the kit displays and/or or contains instructions for using the composition or unit dosage. In another embodiment, the kit also comprises an activating ligand that binds to the ligand binding domain of the gene switch encoded by 20 the polynucleotide in the composition or unit dosage.

The present invention also provides a drug label for the composition or unit dosage of the present invention. In one embodiment, the drug label displays an expiration date for the composition or unit dosage. In another embodiment, the 25 drug label displays instructions for using the composition or unit dosage. In another embodiment, the drug label displays the approved indication(s) for the composition or unit dosage. In another embodiment, the said label is in paper form. In another embodiment, the drug label is in digital or 30 computer-readable form.

The term "activating ligand" as used herein refers to a compound that shows activity as an ecdysone receptor agonist, i.e., a compound that is able to mimic 20-hydroxyecdysone biological activity, and binds to a gene 35 switch ligand binding domain. Activating ligands for use in the present invention include both ecdysteroids and non-steroidal compounds, e.g., tebufenozide and methoxyfenozide

In one embodiment, the activating ligand is an ecdysone 40 receptor agonist disclosed in U.S. Pat. No. 8,076,517 (Publication No. 2009/0163592), No. 2009/0298175, No. 2005/0228016 and in U.S. Pat. Nos. 6,258,603, 7,375,093, 7,456, 315, 7,304,161, and 7,304,162; each of which are hereby incorporated by reference herein.

In certain embodiments, the activating ligand is a compound having Formula I:

$$A \xrightarrow{O} \stackrel{E}{\underset{N}{\bigvee}} \stackrel{N}{\underset{N}{\bigvee}} \stackrel{B}{\underset{O}{\bigvee}}$$

wherein:

A is alkoxy, arylalkyloxy, aryloxy, arylalkyl, optionally substituted aryl or optionally substituted heteroaryl;

B is optionally substituted aryl or optionally substituted 60 heteroaryl;

E is CR¹R²R³:

R¹ is optionally substituted alkyl, arylalkyl, hydroxyalkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted alkenyl, optionally substituted alkynyl, 65 optionally substituted heterocycle, optionally substituted aryl or optionally substituted heteroaryl; and 64

R² and R³ are independently hydrogen, optionally substituted alkyl, arylalkyl, hydroxyalkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted heterocycle, optionally substituted aryl or optionally substituted heteroaryl; or

R¹ and R² taken together form an optionally substituted alkenyl group.

In one embodiment, the activating ligand is a compound having Formula I:

$$A \xrightarrow{O} \prod_{H}^{E} \prod_{O}^{B}$$

wherein:

A is selected from the group consisting of 2,3,6-tri-Fphenyl-; 2,3-di-CH₃-phenyl-; 2,6-di-F-phenyl-; 2-Br, 3,4-ethylenedioxy-phenyl-; 2-CH=CH₂, 3-OCH₃-2-CH₂CH₃, 3,4-ethylenedioxy-phenyl-; 2-CH₂CH₃, 3-OCH₃-phenyl-; 2-CH₂C1, 3-OCH₃-phenyl-; 2-CH₂F, 3-OCH₃-phenyl-; 2-CH₂NHCH₃, 3-OCH₃-phenyl-; 2-CH₂NMe₂, 3-OCH₃-phenyl-; 2-CH₂OAc, 3-OCH₃-phenyl-; 2-CH₂OCH₂CH=CH₂, 3-OCH₃-phenyl-; 2-CH₂OH, 3-OCH₃-phenyl-; 2-CH₂OMe, 3-OCH₃-phenyl-; 2-CH₂OMe, 3-OMephenyl-; 2-CH₂S(O)₂CH₃, 3-OCH₃-phenyl-; 2-CH₂S (O)CH₃, 3-OCH₃-phenyl-; 2-CH₂SCH₃, 3-OCH₃-phenyl-; 2-CH₃, 3,4-ethylenedioxy-phenyl-; 2-CH₃, 3,4-OCH₂O-phenyl-; 2-CH₃, 3-Ac-phenyl-; 2-CH₃, 3-CH₂CH₂CH₂O-4-phenyl-; 2-CH₃, 3-CH₃-phenyl-; 2-CH₃, 3-Cl-phenyl-; 2-CH₃, 3-Et-phenyl-; 2-CH₃, 3-Iphenyl-; 2-CH₃, 3-NMe₂-phenyl-; 2-CH₃, 3-NO₂-phenyl-; 2-CH₃, 3-OAc-phenyl-; 2-CH₃, 3-OCF₃-phenyl-; 2-CH₃, 3-OCH₂OCH₂-4-phenyl-; 2-CH₃, 3-OCH₃phenyl-; 2-CH₃, 3-OH-phenyl-; 2-CH₃, 3-Oi-Pr-phenyl-; 2-CH₃, 3-OMe-phenyl-; 2-CH₃, 4,5-methylenedioxy-phenyl-; 2-CH₃-3-OCH₃-phenyl-; 2-Cl 4,5methylenedioxy-phenyl-; 2-Cl, 3-CH₂OCH₂O-4phenyl-; 2-Cl, 3-CH₂OCH₂O-4-phenyl-; 2-Cl, 3-OMephenyl-; 2-Et, 3,4-ethylenedioxy-phenyl-; 2-Et, 3,4-OCH(CH₃)O-phenyl-; 2-Et, 3,4-OCH₂O-phenyl-; 2-Et, 3-OCH₃-phenyl-; 2-F, 3,4-CH₂OCH₂O-phenyl-; 2-F, 4-CH₂CH₃-phenyl-; 2-F, 4-Et-phenyl-; 2-I, 3-OMephenyl-; 2-NH₂, 3-OMe-phenyl-; 2-NO₂, 3-OMe-phenyl-; 2-Vinyl, 3-OMe-phenyl-; 3,4-(CH₂)₄-phenyl-; 3,4-di-Et-phenyl-; 3,4-ethylenedioxy-phenyl-; 3,4-OCF₂O-phenyl-; 3,4-OCH(CH₃)O-phenyl-; OCH₂O-phenyl-; 3-Cl, 4-Et-phenyl-; 3-NH—C—C-4phenyl-; 3-OCH(CH₃)CH₂O-4-phenyl-; 3-OCH₃, 4-CH₃-phenyl-; 3,4-S—C—N-phenyl-; 4-Br-phenyl-; 4-CH(OH)CH₃-phenyl-; 4-C(O)CH₃-phenyl-; 4-CH₂CH₃-phenyl-; 4-CH₂CN-phenyl-; 4-CH₃-phenyl-; 4-Cl-phenyl-; 4-Et-phenyl-; 4-OCH₃-phenyl-; phenyl-; and benzo[1,2,5]oxadiazole-5-yl;

B is selected from the group consisting of 1-trityl-5-benzimidazolyl-; 3-trityl-5-benzimidazolyl-; 1H-indazole-3-yl-; 1-methyl-1H-indole-2-yl-; 1-methyl-2-oxo-6-trifluoromethyl-3-pyridyl-; 1-trityl-1H-indazole-3-yl-; 2,3,4,5-phenyl-; 2,3,4,5-tetra-F-phenyl-; 2,3,4-F-phenyl-; 2,3-F-phenyl-; 2,3-OCH₂O-phenyl-; 2,4,5-F-phenyl-; 2,4-di-Cl-5-F-phenyl-; 2,5-di-OCH₃-phenyl-; 2,5-F-phenyl-; 2,6-di-Cl-4-pyridyl-; 2,6-dimethoxy-4-

pyrimidinyl2,6-di-OCH₃-3-pyridyl2,6-F-phenyl-; 2-Cl, 5-NO₂-phenyl-; 2-Cl-3-pyridyl2-Cl-4-F-phenyl-; 2-Cl-5-CH₃-phenyl-; 2-Cl-6-CH₃-4-pyridyl-; 2-Et-phenyl-; 2-F, 4-Cl-phenyl-; 2-F, 5-CH₃-phenyl-; 2-methoxy-6trifluoromethyl-3-pyridyl-; 2-NO₂-3,5-di-OCH₃, 5 4-CH₃-phenyl-; 2-NO₂-4-Cl-phenyl-; 2-NO₂-5-CH₃phenyl-; 2-NO₂-5-Cl-phenyl-; 2-NO₂-5-F-phenyl-; 2-NO₂-phenyl-; 2-OCH₂CF₃, 5-OCH₃-phenyl-; 2-OCH₃-3-pyridyl2-OCH₃-4-CH3-phenyl-; 2-OCH₃-4-Cl-phenyl-; 2-OCH₃-4-F-phenyl-; 2-OCH₃-5-CH₃- 10 phenyl-; 2-OCH₃-5-Cl-phenyl-; 2-OCH₃-phenyl-; 2-S (O)CH₃-phenyl-; 2-SO₃H-phenyl-; 3,4,5-F-phenyl-; 3,4,5-tri-OCH₃-phenyl-; 3,4-di-CH₃-5-Cl-phenyl-; 3,4-F-phenyl-; 3,4-methylenedioxy-phenyl-; 3,5-di (CH_2OH) -phenyl-; 3,5-di- CH_3 -4-CI-phenyl-; 3,5-di- 15 CH₃-phenyl-; 3,5-di-Cl-4-F-phenyl-; 3,5-di-Clphenyl-; 3,5-di-CO₂H-phenyl-; 3,5-di-F-phenyl-; 3,5di-OCH₃, 4-CH₃-phenyl-; 3,5-di-OCH₃-4-OAcphenyl-; 3,5-di-OCH₃-phenyl-; 3,6-dichloro-4pyridazinyl-; 3,6-dimethoxy-4-pyridazinyl-; 3-Br- 20 phenyl-; 3-CF₃, 5-F-phenyl-; 3-CF₃-4-F-phenyl-; 3-CF₃-4-F-phenyl3-CF₃-phenyl-; 3-CH=NNHCOCONH₂, 5-CH₃-phenyl-; 3-CH=NNHCONH₂, 5-CH₃-phenyl-; 3-CH=NOH, 5-CH₃-phenyl-; 3-CH₂OAc, 5-CH₃-phenyl-; 3-CH₃,

5-Br-phenyl-; 3-CH₃, 5-CH₃-phenyl-; 3-CH₃, 5-Cl-3-CH₃-4-Br-phenyl-; 3-CH₃-phenyl-; 3-chloro-6-methylsulfanyl-pyrazine-2-yl-; 3-Cl, 5-Brphenyl-; 3-Cl, 5-Cl-phenyl-; 3-Cl-5-OCH₃-4-pyridyl-; 3-Cl-phenyl-; 3-CN-phenyl-; 3-F, 5-F-phenyl-; 3-Fphenyl-; 3-NO₂-phenyl-; 3-OCH₃-4-CH₃-phenyl-; 3-OCH₃-4-pyridyl-; 3-OCH₃-phenyl-; 3-OMe, 5-CH₃phenyl-; 3-OMe, 5-OMe-phenyl-; 3-oxo-6-methoxy-4pyridazinyl-; 4,6-dimethyl-pyridyl-; 4-CH₃-phenyl-; 5-benzimidazolyl-; 4-F-phenyl-; 4-pyridazinyl-; 5-methoxycarbonyl-2-pyridyl-; 5-methyl-1-phenyl-1H-pyrazole-3-yl-; 5-methyl-pyrazine-2-yl-; 6-CH₃-2pyridyl-; phenyl-; and pyrazine-2-yl; and

E is selected from the group consisting of C(CH₃)₂C(O)
OEt; C(CH₃)₂CH=NCH₂CH₂OH; C(CH₃)₂
CH=NNHC(O)C)C(O)NH₂; C(CH₃)₂CH=NNHC
(O)NH₂; C(CH₃)₂CH=NOH; C(CH₃)₂CH₂OC(O)
CH₃; C(CH₃)₂CH₂OCH₃; C(CH₃)₂CH₂OH; C(CH₃)₂
CH₂OSi(CH₃)₂Bu; C(CH₃)₂CHO; C(CH₃)₂CN;
C(CH₃)₂COOH; CH(CH₃)C(CH₃)₃; CH(Et)(n-Bu);
CH(Et)(t-Bu;) CH(n-Bu)(t-Bu); CH(n-Pr)(t-Bu);
CH(Ph)(t-Bu); and t-Bu.

In another embodiment, the activating ligand is a compound having Formula I wherein A, B, and E are defined according to Table 3.

TABLE 3

	IABLE 3				
Ligand Components					
A	В	Е			
4-Cl—Ph	Ph	t-Bu			
4-Et—Ph	2-NO ₂ —Ph	t-Bu			
4-CH ₃ —Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu			
4-Et—Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu			
2,6-di-F—Ph	3-Cl, 5-Cl—Ph	t-Bu			
2-CH ₃ , 3-Cl—Ph	3-Cl—Ph	t-Bu			
2-Cl, 3-OMe—Ph	2-Cl-5-CH ₃ —Ph	t-Bu			
2-CH ₃ , 3-Cl—Ph	3-CH ₃ -4-Br—Ph	t-Bu			
4-Et—Ph	3,5-di-CH ₃ -4-Cl—Ph	t-Bu			
4-Et—Ph	3,4-di-CH ₃ -5-Cl—Ph	t-Bu			
4-OCH ₃ —Ph	2-Cl-4-F—Ph	t-Bu			
4-Et—Ph	3-CH ₃ , 5-Cl—Ph	t-Bu			
4-Et—Ph	2-Et—Ph	t-Bu			
4-OCH ₃ —Ph	3-Cl, 5-Cl—Ph	t-Bu			
4-Et—Ph	2-NO ₂ -5-CH ₃ —Ph	t-Bu			
4-CH ₂ CN—Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu			
2-CH ₃ , 3-OMe—Ph	3-CH ₃ —Ph	t-Bu			
4-Br—Ph	3-Cl, 5-Cl—Ph	t-Bu			
2-CH ₃ , 3-NO ₂ —Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu			
2-CH ₃ , 3-CH ₃ —Ph	2,5-di-OCH ₃ —Ph	t-Bu			
2-CH ₃ , 3-CH ₃ —Ph	2-OCH ₃ -5-Cl—Ph	t-Bu			
2-NO ₂ , 3-OMe—Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu			
2-CH ₃ , 3-CH ₃ —Ph	3-OMe, 5-OMe—Ph	t-Bu			
3-Cl, 4-Et—Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu			
4-CH(OH)CH ₃ —Ph	3-F, 5-F—Ph	t-Bu			
2-CH ₃ , 3-NMe ₂ —Ph	3-Cl, 5-Cl—Ph	t-Bu			
2-CH ₃ , 3-Ac—Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu			
2-CH ₃ , 3-OAc—Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu			
2-CH ₃ , 3-I—Ph	3-CH3, 5-CH ₃ —Ph	t-Bu			
2-CH ₃ , 3-OMe—Ph	3-Cl, 5-Br—Ph	t-Bu			
2-CH ₃ , 3-Oi-Pr—Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu			
2-CH ₃ , 3-OCH3—Ph	2-Cl-3-pyridyl	t-Bu			
2-CH ₃ , 3-OMe—Ph	2-OCH ₃ -5-CH ₃ —Ph	t-Bu			
2-CH ₃ , 3-OMe—Ph	2,5-F—Ph	t-Bu			
2-CH ₃ , 3-OMe—Ph	2-Et—Ph	t-Bu			
2-CH ₃ , 3-OMe—Ph	3-CH ₃ , 5-Br—Ph	t-Bu			
2-CH ₃ , 3-OMe—Ph	3-OMe, 5-CH ₃ —Ph	t-Bu			
2-CH ₃ , 3-OMe—Ph	2-OCH ₃ -4-Cl—Ph	t-Bu			
2-CH ₃ , 3-OCF ₃ —Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu			
2-CH ₃ , 3-OMe—Ph	3-OCH ₃ -4-CH ₃ —Ph	t-Bu			
3-OCH ₃ , 4-CH3—Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu			
5-					
2-CH ₃ , 3-OMe—Ph	2-OCH ₃ -4-CH ₃ —Ph	t-Bu			
2-CH ₃ , 3-OCH ₃ —Ph	2,6-di-Cl-4-pyridyl	t-Bu			
2-CH ₃ , 3-OMe—Ph	2-NO ₂ -5-CH ₃ —Ph	t-Bu			

TABLE 3-continued

TABLE 3-continued				
	Ligand Components			
A	В	E		
2-CH ₃ , 3-OMe—Ph	2-F-4-Cl—Ph	t-Bu		
3,4-OCH ₂ O—Ph	2-Cl-4-F—Ph	t-Bu		
2-Et, 3-OMe—Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu		
2-CH ₃ , 3-Et—Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu		
3-CH ₂ CH ₂ O-4-Ph	3-CH ₃ , 5-CH ₃ —Ph 3,5-di-Cl-4-F—Ph	t-Bu		
2-CH ₃ , 3-OMe—Ph 2-CH ₃ , 3,4-OCH ₂ O—Ph	4-F—Ph	t-Bu t-Bu		
2-Et, 3,4-OCH ₂ O—Ph	2-OCH ₃ —Ph	t-Bu		
3,4-di-Et—Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu		
2-Et, 3-OMe—Ph	4-F—Ph	t-Bu		
2-Et, 3-OMe—Ph	2-OCH ₃ —Ph	t-Bu		
2-CH ₃ , 3-OMe—Ph 2-Et, 3-OCH ₃ —Ph	2-OCH ₃ -4-F—Ph 2-Cl-6-CH ₃ -4-pyridyl	t-Bu t-Bu		
2-Et, 3-OMe—Ph	3-OMe, 5-OMe—Ph	t-Bu		
2-I, 3-OMe—Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu		
3,4-ethylenedioxy-Ph	2-OCH ₃ —Ph	t-Bu		
3,4-(CH ₂) ₄ —Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu		
2-Et, 3-OMe—Ph 2-F, 4-Et—Ph	2,3-OCH ₂ O—Ph 4-F—Ph	t-Bu t-Bu		
2-Et, 3-OMe—Ph	3,4-methylenedioxy-Ph	t-Bu		
2-CH ₃ , 3,4-ethylenedioxy-Ph	4-F—Ph	t-Bu		
3,4-OCH(CH ₃)O—Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu		
2-Et, 3,4-OCH(CH ₃)O—Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu		
2-CH ₃ , 3,4-ethylenedioxy-Ph	3-OCH ₃ —Ph	t-Bu		
3-OCH(CH ₃)CH ₂ O-4-Ph 2-Br, 3,4-ethylenedioxy-Ph	3-CH ₃ , 5-CH ₃ —Ph 3-CH ₃ , 5-CH ₃ —Ph	t-Bu t-Bu		
2-Et, 3,4-ethylenedioxy-Ph	3-CH ₃ , 5-Cl—Ph	t-Bu		
2-Et, 3,4-ethylenedioxy-Ph	3-CH ₃ —Ph	t-Bu		
2-Et, 3,4-ethylenedioxy-Ph	2-OCH ₃ —Ph	t-Bu		
2-Et, 3,4-ethylenedioxy-Ph	3-OCH ₃ —Ph	t-Bu		
3-S—C—N-4-Ph 2-Et, 3-OMe—Ph	3-CH ₃ , 5-CH ₃ —Ph 2-OCH ₃ -4-Cl—Ph	t-Bu t-Bu		
2-Et, 3-OMe—Ph	2,5-di-OCH ₃ —Ph	t-Bu		
2-CH ₃ , 4,5-methylenedioxy-Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu		
3-CH ₂ OCH ₂ O-4-Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu		
2-CH ₃ , 3-OCH ₂ OCH ₂ -4-Ph	2-OCH ₃ —Ph	t-Bu		
2-Et, 3-OCH ₂ OCH ₂ -4-Ph 2-Cl 4,5-methylenedioxy-Ph	4-F—Ph 3-CH ₃ , 5-CH ₃ —Ph	t-Bu t-Bu		
2,3,6-tri-F—Ph	2-Cl-4-F—Ph	t-Bu		
2-Et, 3-OMe—Ph	2,6-F—Ph	t-Bu		
2-Et, 3-OMe—Ph	3-F—Ph	t-Bu		
2-Et, 3-OMe—Ph	3-Br—Ph	t-Bu		
2-Et, 3-OMe—Ph 2-Et, 3-OMe—Ph	2-NO ₂ —Ph 2,3-F—Ph	t-Bu t-Bu		
2-Et, 3-OMe—Ph	3,4,5-tri-OCH ₃ —Ph	t-Bu		
2-Et, 3-OMe—Ph	3-CF ₃ , 5-F—Ph	t-Bu		
2-Et, 3-OMe—Ph	3-CN—Ph	t-Bu		
2-Vinyl, 3-OMe—Ph	2,4-di-Cl-5-F—Ph	t-Bu		
2-Et, 3-OCH ₂ OCH ₂ -4-Ph 2-Et, 3-OMe—Ph	Ph 3-CH ₃ , 5-CH ₃ —Ph	t-Bu —C(CH ₃) ₂ C(O)OEt		
2-Et, 3-OMe—Ph	3-CH ₃ , 5-CH ₃ —Ph	$-\mathrm{C}(\mathrm{CH}_3)_2\mathrm{CH}_2\mathrm{OH}$		
2-Et, 3-OMe—Ph	3-CH ₃ , 5-CH ₃ —Ph	—C(CH ₃) ₂ CHO		
2-Et, 3-OMe—Ph	3-CH ₃ , 5-CH ₃ —Ph	—C(CH ₃) ₂ CH ₂ OCH ₃		
2-Et, 3-OMe—Ph	3-CH ₃ , 5-CH ₃ —Ph	—C(CH ₃) ₂ CH—NOH		
2-NH ₂ , 3-OMe—Ph 2-Et, 3-OMe—Ph	3-CH ₃ , 5-CH ₃ —Ph 3-CH ₂ OAc, 5-CH ₃ —Ph	t-Bu t-Bu		
2-Et, 3-OMe—Ph	3-CH ₃ , 5-CH ₃ —Ph	—C(CH ₃) ₂ CH ₂ OC(O)CH ₃		
2-CH ₃ , 3-OH—Ph	2,3,4-F—Ph	t-Bu		
2-CH ₃ , 3-OH—Ph	3-Cl-5-OCH ₃ -4-pyridyl	t-Bu		
2-CH ₃ , 3-OH—Ph	2,6-di-Cl-4-pyridyl	t-Bu		
2-CH ₃ , 3-OH—Ph 2-CH ₃ , 3-OH—Ph	3-OCH ₃ -4-pyridyl 3,5-di-OCH ₃ -4-CH ₃ —Ph	t-Bu t-Bu		
2-CH ₃ , 3-CH ₂ CH ₂ CH ₂ O-4-Ph	2-OCH ₃ —Ph	t-Bu		
2-Et, 3-OMe—Ph	2,4-di-Cl-5-F—Ph	t-Bu		
2-CH ₃ , 3-CH ₂ CH ₂ CH ₂ O-4-Ph	2,4-di-Cl-5-F—Ph	t-Bu		
2-CH ₃ , 3-CH ₂ CH ₂ CH ₂ O-4-Ph	2-F, 5-CH ₃ —Ph 3,5-di-OCH ₃ -4-CH ₃ —Ph	t-Bu		
2-CH ₃ , 3-CH ₂ CH ₂ CH ₂ O-4-Ph 2-Et, 3,4-ethylenedioxy-Ph	2,5-F—Ph	t-Bu t-Bu		
2-Et, 3,4-ethylenedioxy-Ph	2,3,4-F—Ph	t-Bu		
2-Et, 3,4-ethylenedioxy-Ph	2,3,4,5Ph	t-Bu		
2-Et, 3,4-ethylenedioxy-Ph	3-CF ₃ -4-F—Ph	t-Bu		
2-Et, 3,4-ethylenedioxy-Ph	2,6-di-Cl-4-pyridyl	t-Bu		
2-Et, 3,4-ethylenedioxy-Ph 2-Et, 3,4-ethylenedioxy-Ph	2-OCH ₃ —Ph 2,4-di-Cl-5-F—Ph	t-Bu t-Bu		
2-Et, 3,4-ethylenedioxy-Ph	2-F, 4-Cl—Ph	t-Bu		
2-CH ₃ , 3-OAc—Ph	3,5-di-OCH ₃ -4-CH ₃ —Ph	t-Bu		
-	- -			

	Ligand Components	
		_
<u>A</u>	В	Е
2-Et, 3-OMe—Ph	2-OCH ₃ -5-Cl—Ph	t-Bu
2-Et, 3,4-OCH ₂ O—Ph 2-CH ₃ , 3-CH ₂ CH ₂ CH ₂ O-4-Ph	2-OCH ₃ -4-Cl—Ph 2-OCH ₃ -5-Cl—Ph	t-Bu t-Bu
2-Et, 3-OMe—Ph	2-NO ₂ -5-CH ₃ —Ph	t-Bu
2-Et, 3-OMe—Ph	2-NO ₂ -4-Cl—Ph	t-Bu
2-Et, 3-OMe—Ph	2-NO ₂ -5-Cl—Ph 2-NO ₂ -5-CH ₃ —Ph	t-Bu t-Bu
2-CH ₃ , 3-CH ₂ CH ₂ CH ₂ O-4-Ph Benzo[1,2,5]oxadiazole-5-yl	2-OCH ₃ -4-Cl—Ph	t-Bu
2-Vinyl, 3-OMe—Ph	2-Cl, 5-NO ₂ —Ph	t-Bu
2-Vinyl, 3-OMe—Ph 2-Et, 3-OCH ₃ —Ph	2-OCH ₃ -4-Cl—Ph 1-methyl-1H-indole-2-yl	t-Bu t-Bu
2-Et, 3-GeH3—Th 2-Et, 3,4-ethylenedioxy-Ph	3,5-di-OCH ₃ -4-CH ₃ —Ph	t-Bu
2-Cl, 3-CH ₂ OCH ₂ O-4-Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu
2-F, 4-Et—Ph 2-F, 4-Et—Ph	3-NO ₂ —Ph 3-OCH ₃ —Ph	t-Bu t-Bu
2-Cl, 3-CH ₂ OCH ₂ O-4-Ph	3,5-di-OCH ₃ -4-CH ₃ —Ph	t-Bu
2-F, 4-Et—Ph	2,6-di-Cl-4-pyridyl	t-Bu
2-F, 4-Et—Ph 2-F, 4-Et—Ph	3,5-di-OCH ₃ -4-CH ₃ —Ph 3,4,5-F—Ph	t-Bu t-Bu
2-F, 4-Et—Ph	3-CH ₃ —Ph	t-Bu
2-F, 4-Et—Ph	2-OCH ₃ —Ph	t-Bu
2-F, 4-Et—Ph	2-NO ₂ -5-F—Ph	t-Bu
2-F, 4-Et—Ph 2-F, 4-Et—Ph	2-OCH ₂ CF ₃ , 5-OCH ₃ —Ph 2-Cl-6-CH ₃ -4-pyridyl	t-Bu t-Bu
2-F, 4-Et—Ph	2,6-di-OCH ₃ -3-pyridyl	t-Bu
3-NH—C—C-4-Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu
2-Et, 3-OMe—Ph 3,4-OCF ₂ O—Ph	2-S(O)CH ₃ —Ph 2-NO ₂ —Ph	t-Bu t-Bu
3,4-OCF ₂ O—Ph	3-CH ₃ , 5-CH ₃ —Ph	t-Bu
3,4-OCF ₂ O—Ph	3-OCH ₃ —Ph	t-Bu
2-Et, 3-OMe—Ph 2-CH ₂ OMe, 3-OMe—Ph	3-Br—Ph 3,5-di-Cl—Ph	−C(CH ₃) ₂ CN t-Bu
2-Et, 3-OMe—Ph	3-CH=NOH, 5-CH ₃ -Ph	t-Bu
2-Et, 3-OMe—Ph	3-CH=NNHCONH ₂ , 5-CH ₃ —Ph	t-Bu
2-Et, 3-OMe—Ph 2-Et, 3-OMe—Ph	$3\text{-CH} = \text{NNHCOCONH}_2$, $5\text{-CH}_3 = \text{Ph}$ 3-CH_3 , $5\text{-CH}_3 = \text{Ph}$	—C(CH ₃) ₂ CN
2-Et, 3-OMe—Ph	3,5-di-OCH ₃ -4-CH ₃ —Ph	$-C(CH_3)_2CN$
2-Et, 3-OCH ₂ OCH ₂ -4-Ph	2-OCH ₃ —Ph	t-Bu
2-CH ₃ , 3-CH ₂ CH ₂ CH ₂ O-4-Ph 2-CH ₃ , 3-CH ₂ CH ₂ CH ₂ O-4-Ph	2,4,5-F—Ph 3,4,5-F—Ph	t-Bu t-Bu
2-CH ₃ , 3-CH ₂ CH ₂ CH ₂ O-4-Ph	3-F—Ph	t-Bu
2-Et, 3,4-OCH ₂ O—Ph	3-CF ₃ —Ph	t-Bu
2-CH ₃ , 3-CH ₂ CH ₂ CH ₂ O-4-Ph 2-CH ₃ , 3-CH ₂ CH ₂ CH ₂ O-4-Ph	4-F—Ph 3,4-F—Ph	t-Bu t-Bu
2-CH ₃ , 3-CH ₂ CH ₃ CH ₂ O-4-Ph	3,5-di-F—Ph	t-Bu
2-CH ₃ , 3-CH ₂ CH ₂ CH ₂ O-4-Ph	2,3,4,5-tetra-F—Ph	t-Bu
2-Et, 3-OCH ₂ OCH ₂ -4-Ph 2-Et, 3-OMe—Ph	4-CH ₃ —Ph 3,5-di-OCH ₃ -4-OAc—Ph	t-Bu t-Bu
2-Et, 3-OMe—Ph	3,5-di-OCH ₃ —OH—Ph	t-Bu
2-CH ₃ , 3,4-ethylenedioxy-Ph	3,5-di-OCH ₃ -4-CH ₃ —Ph	t-Bu
2-CH ₃ , 3,4-ethylenedioxy-Ph 2-CH ₃ , 3,4-ethylenedioxy-Ph	2,6-di-OCH ₃ -3-pyridyl 2,6-di-Cl-4-pyridyl	t-Bu t-Bu
2-CH ₃ , 3,4-ethylenedioxy-Ph	3-F—Ph	t-Bu
2-CH ₃ , 3,4-ethylenedioxy-Ph	3-CF ₃ , 5-F—Ph	t-Bu
2-CH ₃ , 3,4-ethylenedioxy-Ph 2-ethyl, 3-methoxy	2-NO ₂ -5-CH ₃ —Ph 4,6-dimethyl-pyridyl	t-Bu t-Bu
2-CH ₃ , 3,4-ethylenedioxy-Ph	3,5-di-CH ₃ —Ph	—CH(Et)C(CH ₃) ₃
2-CH ₃ , 3,4-ethylenedioxy-Ph	3,5-di-OCH ₃ -4-CH ₃ —Ph	-CH(Et)C(CH ₃) ₃
2-CH ₃ , 3,4-ethylenedioxy-Ph 2-CH ₃ , 3,4-ethylenedioxy-Ph	3,5-di-CH ₃ —Ph 3,5-di-OCH ₃ -4-CH ₃ —Ph	—CH(n-Pr)C(CH ₃) ₃ —CH(n-Pr)C(CH ₃) ₃
2-CH ₂ CH ₃ , 3,4-ethylenedioxy-Ph	3,5-di-CH ₃ —Ph	—CH(Et)C(CH ₃) ₃
2-CH ₂ CH ₃ , 3,4-ethylenedioxy-Ph	3,5-di-OCH3-4-CH3—Ph	-CH(Et)C(CH ₃) ₃
2-CH ₂ CH ₃ , 3,4-ethylenedioxy-Ph 2-CH ₂ CH ₃ , 3,4-ethylenedioxy-Ph	3,5-di-CH ₃ —Ph 3,5-di-OCH ₃ -4-CH ₃ —Ph	—CH(n-Pr)C(CH ₃) ₃ —CH(n-Pr)C(CH ₃) ₃
2-CH ₃ , 3-OCH ₃ —Ph	2-methoxy-6-trifluoromethyl-3-	—C(CH ₃) ₃
2-CH ₃ , 3-OCH ₃ —Ph	pyridyl 1-methyl-2-oxo-6-trifluoromethyl-	—C(CH ₃) ₃
2-CH ₃ , 3-OCH ₃ —Ph	3-pyridyl 2,6-dimethoxy-4-pyrimidinyl	—C(CH ₃) ₃
2-CH ₃ , 3-OCH ₃ —Ph	3,6-dimethoxy-4-pyridazinyl	—C(CH ₃) ₃
2-CH ₃ , 3-OCH ₃ —Ph	3,6-dichloro-4-pyridazinyl	—C(CH ₃) ₃
2-CH ₃ , 3-OCH ₃ —Ph 2-CH ₃ , 3-OCH ₃ —Ph	4-pyridazinyl 3-oxo-6-methoxy-4-pyridazinyl	—С(СН ₃) ₃ —С(СН ₃) ₃
2-CH ₃ , 3-OCH ₃ —Ph	3,5-di-CH ₃ —Ph	—CH(Et)C(CH ₃) ₃
2-CH ₃ , 3-OCH ₃ —Ph	3,5-di-OCH ₃ -4-CH ₃ —Ph	—CH(Et)C(CH ₃) ₃
2-CH ₃ , 3-OCH ₃ —Ph	3,5-di-CH ₃ —Ph	CH(n-Pr)C(CH ₃) ₃

TABLE 3-continued

Ligand Components				
A	В	Е		
2-CH ₃ , 3-OCH ₃ —Ph	3,5-di-OCH ₃ -4-CH ₃ —Ph	—CH(n-Pr)C(CH ₃) ₃		
2-CH ₂ CH ₃ , 3-OCH ₃ —Ph	3,5-di-CH ₃ —Ph	$CH(Et)C(CH_3)_3$		
2-CH ₂ CH ₃ , 3-OCH ₃ —Ph	3,5-di-OCH ₃ -4-CH ₃ —Ph	-CH(Et)C(CH ₃) ₃		
2-CH ₂ CH ₃ , 3-OCH ₃ —Ph	3,5-di-CH ₃ —Ph	CH(n-Pr)C(CH ₃) ₃		
2-CH ₂ CH ₃ , 3-OCH ₃ —Ph	3,5-di-OCH ₃ -4-CH ₃ —Ph 3,5-di-CH ₃ —Ph	CH(n-Pr)C(CH ₃) ₃		
2-CH ₃ , 3-OCH ₃ —Ph 2-CH ₃ , 3-OH—Ph	3-OCH ₃ -4-pyridyl	—CH(Et)C(CH ₃) ₃ —C(CH ₃) ₃		
4-CH(OH)CH ₃ —Ph	3,5-di(CH ₂ OH)—Ph	—С(СП ₃) ₃ —С(СН ₃) ₃		
2-CH ₂ CH ₃ , 3-OCH ₃ —Ph	2-S(O)CH ₃ —Ph	$-C(CH_3)_3$		
4-C(O)CH ₃ —Ph	3,5-di-CO ₂ H—Ph	$-C(CH_3)_3$		
2-CH ₃ , 3,4-ethylenedioxy-Ph	2,6-di-OCH ₃ -3-pyridyl	—C(CH ₃) ₃		
2-CH ₂ CH ₃ , 3,4-ethylenedioxy-Ph	3-CF ₃ -4-F-phenyl	—C(CH ₃) ₃		
2-F, 4-CH ₂ CH ₃ —Ph	3,5-di-CH ₃ —Ph	—C(CH ₃) ₃		
2-CH ₂ CH ₃ , 3-OCH ₃ —Ph	2-SO ₃ H—Ph	—C(CH ₃) ₃		
2-CH ₃ , 3-CH ₂ CH ₂ CH ₂ O-4-Ph	3,5-di-CH ₃ —Ph	—C(CH ₃) ₃		
4-CH ₂ CH ₃ —Ph	3,5-di-CH ₃ —Ph	—CH(CH ₃)C(CH ₃) ₃		
2-CH ₂ CH ₃ , 3,4-ethylenedioxy-Ph	3-CH ₃ —Ph	—C(CH ₃) ₃		
2,3-di-CH ₃ —Ph	Ph	—CH(Et)(n-Bu)		
2,3-di-CH ₃ —Ph 2-CH ₃ , 3,4-ethylenedioxy-Ph	3-CH ₃ —Ph 3,5-di-OCH ₃ , 4-OH—Ph	—CH(Et)(t-Bu) —C(CH ₃) ₃		
2-F, 3-CH ₂ OCH ₂ O-4-Ph	3,5-di-CH ₃ —Ph	—C(CH ₃) ₃ —C(CH ₃) ₃		
2-CH ₃ , 3,4-ethylenedioxy-Ph	2-S(O)CH ₃ —Ph	—C(CH ₃) ₃		
2-CH ₃ , 3,4-ethylenedioxy-Ph	3,5-di-OCH ₃ , 4-CH ₃ —Ph	-C(CH ₃) ₂ CN		
2-CH ₂ CH ₃ -3-OCH ₃ —Ph	6-CH ₃ -2-pyridyl-	$-C(CH_3)_3$		
2-CH ₃ , 3,4-ethylenedioxy-Ph	2-NO ₂ -3,5-di-OCH ₃ , 4-CH ₃ —Ph	$-C(CH_3)_3$		
2-CH ₃ , 3,4-ethylenedioxy-Ph	3,5-di-CH ₃ —Ph	—C(CH ₃) ₃		
4-CH ₂ CH ₃ —Ph	3,5-di-CH ₃ —Ph	—C(CH ₃) ₃		
2-CH ₃ -3-OCH ₃ —Ph	3,5-di-CH ₃ —Ph	—C(CH ₃) ₃		
4-CH ₂ CH ₃ —Ph	3,5-di-CH ₃ —Ph	—CH(Et)(t-Bu)		
4-CH ₂ CH ₃ —Ph	2-OCH ₃ -3-pyridyl	—CH(Et)(t-Bu)		
4-CH ₂ CH ₃ —Ph	3,5-di-CH ₃ —Ph	—CH(n-Bu)(t-Bu)		
4-CH ₂ CH ₃ —Ph 4-CH ₂ CH ₃ —Ph	3,5-di-OCH ₃ , 4-CH ₃ —Ph 2-OCH ₃ -3-pyridyl	—CH(n-Bu)(t-Bu) —CH(n-Bu)(t-Bu)		
4-CH ₂ CH ₃ —Ph	3,5-di-CH ₃ —Ph	—CH(Ph)(t-Bu)		
4-CH ₂ CH ₃ —Ph	3,5-di-OCH ₃ , 4-CH ₃ —Ph	—CH(Ph)(t-Bu)		
4-CH ₂ CH ₃ —Ph	2-OCH ₃ -3-pyridyl	—CH(Ph)(t-Bu)		
2-CH ₂ CH ₃ , 3-OCH ₃ —Ph	5-benzimidazolyl	—C(CH ₃) ₃		
2-CH ₂ CH ₃ , 3-OCH ₃ —Ph	1-(or 3-)trityl-5-benzimidazolyl	—C(CH ₃) ₃		
2-CH ₂ CH ₃ , 3-OCH ₃ —Ph	5-methyl-1-phenyl-1H-pyrazole-3-	—C(CH ₃) ₃		
2-CH ₂ CH ₃ , 3-OCH ₃ —Ph	yl 3-chloro-6-methylsulfanyl-	—С(СН ₃) ₃		
2 CH CH 2 CCH Pl	pyrazine-2-yl	C(CII.)		
2-CH ₂ CH ₃ , 3-OCH ₃ —Ph 2-CH ₂ CH ₃ , 3-OCH ₃ —Ph	1H-indazole-3-yl	—C(CH ₃) ₃		
2-CH ₂ CH ₃ , 3-OCH ₃ —Ph 2-CH ₂ CH ₃ , 3-OCH ₃ —Ph	1-trityl-1H-indazole-3-yl 5-methoxycarbonyl-2-pyridyl	—С(СН ₃) ₃ —С(СН ₃) ₃		
2-CH ₂ CH ₃ , 3-OCH ₃ —Ph	pyrazine-2-yl	—C(CH ₃) ₃ —C(CH ₃) ₃		
2-CH ₂ CH ₃ , 3-OCH ₃ —Ph	3,5-di-CH ₃ —Ph	—C(CH ₃) ₂ CH ₂ OSi(CH ₃)2tBu		
2-CH ₂ CH ₃ , 3-OCH ₃ —Ph	3,5-di-CH ₃ —Ph	—C(CH ₃) ₂ CH≡NCH ₂ CH ₂ OH		
2-CH ₂ CH ₃ , 3-OCH ₃ —Ph	3,5-di-CH ₃ —Ph	-C(CH ₃) ₂ CH=NNHC(O)NH ₂		
2-CH ₂ CH ₃ , 3-OCH ₃ —Ph	3,5-di-CH ₃ —Ph	-C(CH ₃) ₂ CH=NNHC(O)C(O)NH ₂		
2-CH ₂ CH ₃ , 3-OCH ₃ —Ph	3,5-di-CH ₃ —Ph	—C(CH ₃) ₂ COOH		
2-CH ₂ S(O)CH ₃ , 3-OCH ₃ —Ph	3,5-di-CH ₃ —Ph	—C(CH ₃) ₃		
2-CH ₃ S(O) ₂ CH ₃ , 3-OCH3—Ph	3,5-di-CH ₃ —Ph	$-C(CH_3)_3$		
2-CH ₂ NMe ₂ , 3-OCH ₃ —Ph	3,5-di-CH ₃ —Ph	—C(CH ₃) ₃		
2-CH ₂ NHCH ₃ , 3-OCH ₃ —Ph	3,5-di-CH ₃ —Ph	—C(CH ₃) ₃		
2-CH=CH ₂ , 3-OCH ₃ —Ph—	3,5-di-CH ₃ —Ph	—C(CH ₃) ₃		
2-CH ₂ OMe, 3-OCH ₃ —Ph—	3,5-di-CH ₃ —Ph	—C(CH ₃) ₃ —C(CH ₃) ₃		
2-CH ₂ SCH ₃ , 3-OCH ₃ —Ph 2-CH ₂ OCH ₂ CH=CH ₂ , 3-OCH ₃ —Ph	3,5-di-CH ₃ —Ph 3,5-di-CH ₃ —Ph	—C(CH ₃) ₃ —C(CH ₃) ₃		
2-CH ₂ OCH ₂ CH=CH ₂ , 3-OCH ₃ —FII 2-CH ₂ Cl, 3-OCH ₃ —Ph—	3,5-di-CH ₃ —Fli 3,5-di-CH ₃ —Ph	—C(CH ₃) ₃ —C(CH ₃) ₃		
2-CH ₂ CI, 3-OCH ₃ —Ph—	3,5-di-CH ₃ —Ph	—C(CH ₃) ₃ —C(CH ₃) ₃		
2-CH ₂ OAc, 3-OCH ₃ —Ph	3,5-di-CH ₃ —Ph	—C(CH ₃) ₃		
2-CH ₂ F, 3-OCH ₃ —Ph—	3,5-di-CH ₃ —Ph	$-C(CH_3)_3$		
2-CH ₃ , 3-OCH ₃	3,5-di-CH ₃	—CH(n-Bu)(t-Bu)		
2-CH ₃ , 3-OCH ₃	3,5-di-OCH ₃ , 4-CH ₃	—CH(n-Bu)(t-Bu)		
2-CH ₂ CH ₃ , 3-OCH ₃ —Ph	5-Methyl-pyrazine-2-yl-	—C(CH ₃) ₃		

In another embodiment, the activating ligand is a compound having Formula I selected from the group consisting of:

3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-hydroxymethyl-5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl)-hydrazide;

3,5-Dimethyl-benzoic acid N-tert-butyl-N'-[3-(tert-butyl-dimethyl-silanyloxymethyl)-5-methyl-2,3-dihydro-benzo[1, 4]dioxine-6-carbonyl]-hydrazide;

⁵ 7-[N'-tert-Butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxine-2-carboxylic acid;

7-[N'-tert-Butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxine-2-carboxylic acid methyl ester;

3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-semicarbazidomethyl-5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl)-hydrazide;

Phenyl-carbamic acid 7-[N'-tert-butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo [1,4]dioxin-2-ylmethyl ester;

3,5-Dimethyl-benzoic acid N'-[3-(2-amino-ethyl)-5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl]-N-tert-butyl-hydrazide;

7-[N'-tert-Butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxine-2-carboxylic acid pentafluorophenyl ester;

7-[N'-tert-Butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxine-2-carboxylic acid methylamide;

3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-formyl-5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl)-hydrazide:

Toluene-4-sulfonic acid 7-[N'-tert-butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydrobenzo[1,4]dioxin-2-ylmethyl ester;

3,5-Dimethyl-benzoic acid N-tert-butyl-N'-[3-(hydroxy-imino-methyl)-5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl]-hydrazide;

3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-cyanomethyl-5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl)-hydrazide;

3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(5-methyl-3-methylsulfanylmethyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl)-hydrazide;

3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-methane-sulfonylmethyl-5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl)-hydrazide;

3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-fluoromethyl-5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl)-hydrazide;

3,5-Dimethyl-benzoic acid N-(1-tert-butyl-heptyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide;

3,5-Dimethyl-benzoic acid N-(1-tert-butyl-heptyl)-N'-(4-ethyl-benzoyl)-hydrazide;

3,5-Dimethoxy-4-methyl-benzoic; acid-N-(1-tert-butyl-heptyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide;

3,5-Dimethoxy-4-methyl-benzoic acid-N-(1-tert-butyl-heptyl)-N'-(4-ethyl-benzoyl)-hydrazide;

2-Methoxy-nicotinic acid N-(1-tert-butyl-heptyl)-N'-(4-ethyl-benzoyl)-hydrazide;

3,5-Dimethyl-benzoic acid N-(1-tert-butyl-3,4,4-trimethyl-pent-2-enyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide;

3,5-Dimethyl-benzoic acid N-(1-tert-butyl-2-cyano-vinyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide;

3,5-Dimethyl-benzoic acid N-(1-butyl-2,2-dimethyl-pentyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide; and

3,5-Dimethyl-benzoic acid N-(1-butyl-2,2-dimethyl-pent-4-enyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide.

In another embodiment, the activating ligand is an enantiomerically enriched compound having Formula II:

 $A \xrightarrow{R^1 \xrightarrow{\frac{H}{2}}} R^2$ $A \xrightarrow{N} \stackrel{N}{H} O$

wherein:

20

A is alkoxy, arylalkyloxy, arylakyl, optionally substituted aryl or optionally substituted heteroaryl;

B is optionally substituted aryl or optionally substituted heteroaryl; and

R¹ and R² are independently optionally substituted alkyl, arylalkyl, hydroxyalkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted heterocycle, optionally substituted aryl or optionally substituted heteroaryl;

with the proviso that R¹ does not equal R²;

wherein the absolute configuration at the asymmetric carbon atom bearing R^1 and R^2 is predominantly S.

In another embodiment, the activating ligand is an enantiomerically enriched compound having Formula III:

wherein:

A is alkoxy, arylalkyloxy, aryloxy, arylalkyl, optionally substituted aryl or optionally substituted heteroaryl;

B is optionally substituted aryl or optionally substituted heteroaryl; and

R¹ and R² are independently optionally substituted alkyl, arylalkyl, hydroxyalkyl, haloalkyl, optionally substituted cycloalkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted heterocycle, optionally substituted aryl or optionally substituted heteroaryl;

with the proviso that R^1 does not equal R^2 ;

wherein the absolute configuration at the asymmetric carbon atom bearing R^1 and R^2 is predominantly R.

In another embodiment, the activating ligand is an enantiomerically enriched compound having Formula III, wherein:

A is:

$$\mathbb{R}^{3a}$$
 \mathbb{R}^{3b}
 \mathbb{R}^{3c}

B is:

 R^{3a} , R^{3b} , R^{3c} , R^{3d} , R^{3e} , R^{3f} , R^{3g} , R^{3h} , R^{3i} and R^{3j} are independently selected from hydrogen, halo, $(C_1\text{-}C_4)$ alkyl, or $(C_1\text{-}C_4)$ alkoxy;

 ${\bf R}^1$ is $({\bf C}_1\text{-}{\bf C}_6)$ alkyl, hydroxy(C $_1\text{-}{\bf C}_4)$ alkyl, or (C $_2\text{-}{\bf C}_4)$ alkenyl; and

 R^2 is optionally substituted (C₁-C₆)alkyl.

In another embodiment, the activating ligand is a compound having Formula III selected from the group consisting 20 of:

(R)-N'-(1-tert-Butyl-butyl)-N'-(3,5-dimethyl-benzoyl)-hydrazinecarboxylic acid benzyl ester;

(R)-N'-(1-tert-Butyl-butyl)-N'-(3,5-dimethyl-benzoyl)-hydrazinecarboxylic acid tert-butyl ester;

(R)-N'-(1-tert-Butyl-4-hydroxy-butyl)-N'-(3,5-dimethyl-benzoyl)-hydrazine carboxylic acid benzyl ester;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(2-ethyl-3-methoxy-benzoyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N'-benzoyl-N-(1-tert-bu- 30 tyl-butyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(2-methyl-benzoyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(2-methoxy-benzoyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(2-fluoro-benzoyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(2-chloro-benzoyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N'-(2-bromo-benzoyl)-N- 40 (1-tert-butyl-butyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(3-methyl-benzoyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(3-methoxy-benzoyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(3-chloro-benzoyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(4-methyl-benzoyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'- 50 (4-ethyl-benzoyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(4-methoxy-benzoyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(4-chloro-benzoyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(2,6-difluoro-benzoyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-

(2,6-dichloro-benzoyl)-hydrazide; (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'- 60 (3,4-dimethoxy-benzoyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(3,5-diffuoro-benzoyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(3,5-dimethoxy-4-methyl-benzoyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(4-methyl-benzo[1,3]dioxole-5-carbonyl)-hydrazide;

76

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl)-hydrazide:

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'- (5-ethyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl)-hydrazide:

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(naphthalene-1-carbonyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(naphthalene-2-carbonyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(thiophene-2-carbonyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(2,5-dimethyl-furan-3-carbonyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(2-chloro-pyridine-3-carbonyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(6-chloro-pyridine-3-carbonyl)-hydrazide;

(R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide;

(R)-3,5-Dimethoxy-4-methyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide; and (R)-3,5-Dimethyl-benzoic acid N'-(4-ethyl-benzoyl)-N-(1-phenethyl-but-3-enyl)-hydrazide.

In another embodiment, the activating ligand is a compound having Formula IV:

IV

wherein:

Q is O or S;

R¹ is selected from the group consisting of hydrogen, (C₁-C₁₂)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₂)alkyl, (C₁-C₂)alkyl, (C₁-C₁₂)haloalkyl, (C₂-C₁₂)alkenyl, (C₃-C₁₂)cycloalkenyl, (C₂-C₁₂)haloalkenyl, (C₂-C₁₂)alkynyl, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₁-C₆)alkylthio(C₁-C₆)alkyl, (C₁-C₆)alkoxycarbonyl, succinimidylmethyl, benzosuccinimidylmethyl, optionally substituted phenyl, optionally substituted 1-naphthyl, optionally substituted 2-naphthyl, optionally substituted phenyl(C₁-C₃)alkyl, optionally substituted phenyl(C₁-C₃)alkyl, optionally substituted phenyl(C₁-C₃)alkyl, optionally substituted phenoxy(C₁-C₃)alkyl, optionally substituted phenylamino, and optionally substituted heterocycle:

R² and R³ are each independently selected from hydrogen, (C₁-C₆)alkyl, and (C₁-C₆)haloalkyl;

R⁴ is hydrogen, (C₁-C₆)alkyl, or (C₁-C₆)haloalkyl;

R⁵ and R⁶ are each independently selected from the group consisting of hydrogen, (C₁-C₁₂)alkyl, (C₃-C₁₂)cycloalkyl, (C₁-C₁₂)haloalkyl, (C₂-C₁₂)alkenyl, (C₃-C₁₂) cycloalkenyl, (C₂-C₁₂)haloalkenyl, (C₂-C₁₂)alkynyl, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₁-C₆)alkylthio(C₁-C₆) alkyl, aminocarbonyl, aminothiocarbonyl, formyl, (C₁-C₆)alkylsulfinyl, (C₁-C₆)alkylsulfonyl, (C₁-C₆)alkylcarbonyl, balo(C₁-C₆)

alkylcarbonyl, (C_1-C_6) alkylaminocarbonyl, $di(C_1-C_6)$ alkylaminocarbonyl, (C_1-C_6) alkoxycarbonyl, (C_1-C_6) alkoxycarbonylcarbonyl, or phenyl (C_2-C_3) alkenylcarbonyl, optionally substituted phenyl, optionally substituted 2-naphthyl, optionally substituted 2-naphthyl, optionally substituted phenyl (C_1-C_3) alkyl, optionally substituted phenyl (C_2-C_3) alkenyl, optionally substituted phenylcarbonyl, or optionally substituted heterocycle;

R⁷, R⁸, R⁹, and R¹⁰ are each independently selected from the group consisting of hydrogen, cyano, nitro, halogen, (C_1-C_{12}) alkyl, (C_3-C_{12}) cycloalkyl, (C_1-C_{12}) haloalkyl, (C₂-C₁₂)alkenyl, (C₃-C₁₂)cycloalkenyl, (C₂- C_{12})haloalkenyl, $(C_2$ - C_{12})alkynyl, halo $(C_2$ - C_6)alkynyl, hydroxy, (C_1-C_6) alkoxy, halo (C_2-C_6) alkoxy, (C_2-C_6) alkoxy, halo (C_2-C_6) alkoxy, (C_2-C_6) alkoxy, halo (C_2-C_6) alkoxy, halo (C_2-C_6) alkoxy, aryloxy, (C_1-C_6) alkoxy (C₁-C₆)alkyl, (C₁-C₆)alkylthio, halo(C₁-C₆)alkylthio, (C_2-C_6) alkenylthio, halo (C_2-C_6) alkenylthio, (C_2-C_6) alkynylthio, halo(C2-C6)alkynylthio, (C1-C6)alkylsulfinyl, halo(C₁-C₆)alkylsulfinyl, (C₁-C₆)alkylsulfonyl, halo(C₁-C₆)alkylsulfonyl, (C₁-C₆)alkylamino, $\label{eq:continuous} \mbox{di}(\mbox{C}_1\mbox{-}\mbox{C}_6) \mbox{alkylamino}, (\mbox{C}_1\mbox{-}\mbox{C}_3) \mbox{alkoxy}(\mbox{C}_1\mbox{-}\mbox{C}_3) \mbox{alkyl}, (\mbox{C}_1\mbox{-}\mbox{C}_3) \mbox{Alkyl}, (\mbox{C}_1\mbox{-}\mbox{C}_3$ $\begin{array}{lll} C_6\text{)alkylthio}(C_1\text{-}C_6)\text{ alkyl}, & (C_1\text{-}C_3)\text{ alkylsulfinyl}(C_1\text{-}C_3)\\ \text{ alkyl}, & (C_1\text{-}C_3)\text{ alkylsulfonyl}(C_1\text{-}C_3)\text{ alkyl}, & (C_1\text{-}C_3)\text{ alkylsulfonyl}(C_1\text{-}C_3)\text{ alkylsulfonyl}$ (C_1-C_6) alkylcarbonyl, alkylaminocarbonyl, di(C1-C6)alkylaminocarbonyl, or (C₁-C₆)alkoxycarbonyl, optionally substituted phenyl, optionally substituted 1-naphthyl, optionally substituted 2-naphthyl, optionally substituted phenyl(C₁-C₃) alkyl, optionally substituted phenyl(C2-C3)alkenyl, or optionally substituted heterocycle.

In another embodiment, the activating ligand is a compound having Formula IV wherein:

Q is O;

R¹ is selected from the group consisting of 4-fluorophenyl, 3-fluorophenyl, 4-fluoro-3-methylphenyl, 4-fluoro-3-iodo-

phenyl, 3-fluoro-4-iodophenyl, 3,4-di-fluorophenyl, 4-ethylphenyl, 3-fluoro-4-methylphenyl, 3-fluoro-4-ethylphenyl, 3-chloro-4-fluorophenyl, 3-fluoro-4-chlorophenyl, 2-methyl-3-methoxyphenyl, 2-ethyl-3,4-ethylenedioxyphenyl, 3-nitrophenyl, 4-iodophenyl, 3-fluoro-4-trifluoromethylphenyl, 3-methylphenyl, 4-methylphenyl, 4-chlorophenyl, 3-trifluoromethylphenyl, 3-methoxyphenyl, 3-chloro-6-pyridyl, 2-chloro-4-pyridyl, phenylamino, 3-chlorophenylamino, 3-methylphenylamino, 4-chlorophenylamino, and 4-methylphenylamino;

R² is hydrogen, methyl or CF₃;

R³ is hydrogen, methyl or CF₃;

R⁴ is hydrogen;

 R^{5} is optionally substituted phenyl, wherein the substituents are selected from the group consisting of cyano, nitro, halogen, $(C_{1}\text{-}C_{3})$ alkyl, halo $(C_{1}\text{-}C_{3})$ alkyl, $(C_{1}\text{-}C_{3})$ alkoxy, halo $(C_{1}\text{-}C_{3})$ alkoxy, (C_{3}) alkenyloxy, (C_{3}) alkynyloxy, $(C_{1}\text{-}C_{3})$ alkylthio, halo $(C_{1}\text{-}C_{3})$ alkylthio, $(C_{1}\text{-}C_{3})$ alkylsulfinyl, halo $(C_{1}\text{-}C_{3})$ alkylsulfinyl, $(C_{1}\text{-}C_{3})$ alkylsulfonyl, halo $(C_{1}\text{-}C_{3})$ alkylsulfonyl, $(C_{1}\text{-}C_{3})$ alkoxy $(C_{1}\text{-}C_{3})$ alkyl, $(C_{1}\text{-}C_{2})$ alkylthio $(C_{1}\text{-}C_{2})$ alkyl, and $(C_{1}\text{-}C_{3})$ alkoxycarbonyl;

R⁶ is selected from the group consisting of hydrogen, formyl, (C₁-C₃)alkylcarbonyl, and cyclo(C₃-C₆)alkylcarbonyl; and

R⁷, R⁸, R⁹, R¹⁰ are independently selected from the group consisting of hydrogen, cyano, nitro, chlorine, fluorine, methyl, trifluoromethyl, difluoromethyl, methoxy, trifluoromethoxy, difluoromethoxy, methylthio, trifluoromethylthio, difluoromethylthio, methylsulfinyl, trifluoromethylsulfinyl, difluoromethylsulfinyl, methylsulfonyl, trifluoromethylsulfonyl, difluoromethylsulfonyl, methoxymethyl, and methoxycarbonyl, or R⁷/R⁸, R⁸/R⁹, or R⁹/R¹⁰ form a 5- or 6-membered heterocyclic ring.

In another embodiment, the activating ligand is a compound having Formula IV wherein Q is O, R^2 is methyl, and R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , and R^{10} are defined according to Table 4.

TABLE 4

		Ligand Comp	onents		
R ¹	R^3 , R^4 , R^7 , R^9 , and R^{10}	R ⁵	R^6	R ⁸	Stereo.1
n-Hexyl	Н	Ph	Н	Н	cis
n-Heptyl	Н	Ph	H	H	cis
n-Bu	Н	Ph	H	Н	cis
3-CF ₃ -4-F—Ph	H	4-F—Ph	H	F	trans
3-CF ₃ -4-F—Ph	Н	4-F—Ph	H	F	cis
3-Cl-4-F—Ph	Н	4-F—Ph	H	F	trans
3-Cl-4-F—Ph	Н	4-F—Ph	H	F	cis
4-F—Ph	H	4-F—Ph	H	F	trans
4-F—Ph	H	4-F—Ph	H	F	cis
Ph	H	4-FPh	H	F	trans
Ph	H	4-FPh	H	F	cis
3-F-4-Me—Ph	H	4-FPh	H	F	cis
3-Me-4-F—Ph	H	4-FPh	H	F	cis
3-F-4-Me—Ph	H	4-FPh	H	F	trans
3,4-di-F-Ph	H	Ph	H	H	cis
3-F-4-Me—Ph	H	Ph	H	H	cis
3-F-4-CF ₃ —Ph	H	Ph	H	H	cis
3,4-di-F—Ph	H	Ph	H	H	trans
3-F-4-Me-Ph	H	Ph	H	H	trans
3-F-4-CF ₃ —Ph	H	Ph	H	H	trans
3,4-di-F—Ph	H	4-Me—Ph	H	Me	e cis
3-F-4-Me—Ph	H	4-Me—Ph	H	Mo	e cis
3-F-4-CF ₃ Ph	H	4-Me—Ph	H	Mo	e cis
3,4-di-F—Ph	H	4-F—Ph	Н	F	trans
3-F-4-CF ₃ —Ph	H	4-F—Ph	H	F	trans

79

TABLE 4-continued

	TA	ABLE 4-cor	ntinued		
Ligand Components					
\mathbb{R}^1	R^3 , R^4 , R^7 , R^9 , and R^{10}	R ⁵	\mathbb{R}^6	R ⁸	Stereo.1
3,4-di-F—Ph	Н	4-F—Ph	Н	F	cis
3-F-4-CF ₃ —Ph	H	4-F—Ph	H	F	cis
3-F-4-Me—Ph 4-Cl—Ph	H H	4-Me—Ph Ph	H H	Me H	trans trans
4-CH ₃ OC(O)—Ph	H	Ph	H	Н	trans
3,4-OCH ₂ O—Ph	Н	Ph	Н	Η	trans
4-Cl—Ph	Н	4-Me—Ph	H		trans
4-CH ₃ OC(O)—Ph	H	4-Me—Ph	H		trans
3,4-OCH ₂ O—Ph 4-Cl—Ph	H H	4-Me—Ph 4-F—Ph	H H	F	trans trans
4-Et—Ph	H	4-F—Ph	H	F	trans
4-CH ₃ OC(O)—Ph	Н	4-F—Ph	H	F	trans
3,4-OCH ₂ O—Ph	H	4-F—Ph	H	F	trans
4-Me—Ph	Н	Ph	Н	Н	80:20
4-Me—Ph	Н	4-F—Ph	Н	Н	cis:trans 75:25 cis:trans
4-Me—Ph	Н	2-Cl—Ph	Н	Н	80:20 cis:trans
4-Me—Ph	Н	3-Cl—Ph	Н	Н	50:50 cis:trans
4-Me—Ph	Н	4-Cl—Ph	Н	Н	80:20 cis:trans
4-Me—Ph	Н	3-Me—Ph	Н	Н	60:40 cis:trans
4-Me—Ph	Н	4-Me—Ph	Н	Н	70:30 cis:trans
4-Me—Ph	Н	3-MeO—Ph	Н	Н	60:40 cis:trans
4-Me—Ph	Н	4-MeO—Ph	Н	Н	80:20 cis:trans
3-F-4-Me—Ph	H, (R ⁹ = Cl)	4-F—Ph	Н	Н	60:40 cis:trans
3-F-4-CF ₃ —Ph	H	4-Me—Ph	H	Me	trans
2-Me-3-MeO—Ph	H	Ph	H	Η	cis
2-F—Ph	H	4-Me—Ph	H		cis
2-Me—Ph 2-MeO—Ph	H H	4-Me—Ph 4-Me—Ph	H H		cis cis
2-Me-3-MeO—Ph	H	4-Me—Ph	H		cis
2-F—Ph	Н	4-F—Ph	H	F	cis
2-Me—Ph	Н	4-F—Ph	H	F	cis
2-MeO—Ph	H	4-F—Ph	H	F	cis
2-Me-3-MeO—Ph	H	4-F—Ph	H	F	cis
4-Et—Ph 4-Et—Ph	H H	Ph 4-Me—Ph	H H	H Me	trans trans
4-Cl—Ph	H	Ph	H	H	cis
4-Et—Ph	H	Ph	H	Н	cis
4-Cl—Ph	H	4-Me—Ph	H	Me	cis
4-Et—Ph	H	4-Me—Ph	H		cis
4-Cl—Ph	H	4-F—Ph	H	F	cis
4-Et—Ph Ph	H H	4-F—Ph Ph	H H	F H	cis cis
3-F—Ph	H	Ph	H	H	cis
2-CF ₃ —Ph	Н	Ph	Н	Н	cis
3-CF ₃ —Ph	Н	Ph	H	Η	cis
4-CF ₃ —Ph	H	Ph	H	Η	cis
Ph	H	4-Me—Ph	H		cis
3-F—Ph 2-CF ₃ —Ph	H H	4-Me—Ph 4-Me—Ph	H H	Me	cis cis
3-CF ₃ —Ph	H	4-Me—Ph	H		cis
4-CF ₃ —Ph	H	4-Me—Ph	H	Me	
3-F—Ph	H	4-F—Ph	H	F	cis
2-CF ₃ —Ph	H	4-F—Ph	H	F	cis
3-CF ₃ —Ph	H	4-F—Ph	H	F	cis
4-CF ₃ —Ph 3-MeO—Ph	H H	4-F—Ph Ph	H H	F H	cis cis
4-Me—Ph	H	Ph	H	Н	cis
4-MeO—Ph	H	Ph	H	Н	cis
4-CH ₃ OC(O)—Ph	Н	Ph	H	Η	cis
3-Me—Ph	H	4-Me—Ph	H		cis
3-MeO—Ph	H	4-Me—Ph	H		cis
4-Me—Ph 4-MeO—Ph	H H	4-Me—Ph 4-Me—Ph	H H		cis cis
4-CH ₃ OC(O)—Ph	H	4-Me—Ph	H		cis
3-Me—Ph	Н	4-F—Ph	Н	F	cis
		-			

81

TABLE 4-continued

	TA	ABLE 4-cor	ntinued		
Ligand Components					
\mathbb{R}^1	R^3 , R^4 , R^7 , R^9 , and R^{10}	R ⁵	\mathbb{R}^6	R ⁸	Stereo.1
3-MeO—Ph	Н	4-F—Ph	Н	F	cis
4-Me—Ph	H	4-F—Ph	H	F	cis
4-MeO—Ph 4-CH ₃ OC(O)—Ph	H H	4-F—Ph 4-F—Ph	H H	F F	cis cis
4-MeO—Ph	Н	Ph	Н	H	trans
4-Me—Ph	Н	Ph	H	Н	trans
Ph	H	Ph	H	Η	trans
4-MeO—Ph	H	4-Me—Ph	H		trans
4-Me—Ph Ph	H H	4-Me—Ph 4-Me—Ph	H H		trans trans
4-MeO—Ph	H	4-Me—rii 4-F—Ph	Н	F	trans
4-Me—Ph	H	4-F—Ph	H	F	trans
6-Cl-3-pyridyl	H	Ph	H	Η	cis
5-isoxazolyl	H	Ph	H	H	cis
3-F-4-Cl—Ph 2-Cl-4-pyridyl	H H	Ph Ph	H H	H H	cis cis
2-Et-3-MeO—Ph	H	Ph	H	H	cis
3-Cl-6-pyridyl	H	4-Me—Ph	H	Me	
5-isoxazolyl	H	4-Me—Ph	H	Me	
3-F-4-Cl—Ph	H	4-Me—Ph	H	Me	
2-Cl-4-pyridyl 2-Et-3-MeO—Ph	H H	4-Me—Ph 4-Me—Ph	H H	Me Me	cis cis
3-Cl-6-pyridyl	H	4-Me—I II 4-F—Ph	H	F	cis
5-isoxazolyl	H	4-F—Ph	H	F	cis
3-F-4-Cl—Ph	H	4-F—Ph	H	F	cis
2-Cl-4-pyridyl	H	4-F—Ph	H	F	cis
2-Et-3-MeO—Ph 2-Thienyl	H H	4-F—Ph Ph	H Ac	F H	cis
Styryl	H	Ph	Ac	H	
4-Cl—Ph	H	Ph	4-MeO—Ph—C(O)	Н	
furan-2-ylvinyl	H	Ph	H	Η	
2-Thienyl	H	Ph	H	H	
4-t-butyl—Ph 4-F—Ph	H H	Ph 4-Me—Ph	Ac H	H Me	
Benzosuccinimidyl- methyl	Н	4-Me—Ph	Н	Me	
n-Pr	H	4-F—Ph	benzoyl	Η	
n-Octyl Me	H H	Ph Ph	H 4-F—Ph—C(O)	H H	cis
2-Cl—PhOCH ₂	H	Ph	В	Н	
Benzyl	H	Ph	H	Η	
4-MeO—Ph	Н	Ph	2-thiophenyl-C(O)	Η	
Me	H	Ph	4-Me—Ph—C(O)	Н	
3-MeO—Ph 4-t-butyl—Ph	H H	Ph Ph	n-hexanoyl H	H H	cis
4-MeO—Ph	H, $(R^{10} = Me)$	2-Me—Ph	Н	Н	CIS
3-F—Ph	(K = Me) H	Ph	3-F—Ph(CO)	Н	
Ph	H	3-MeO—Ph	Н	Η	
4-n-pentyl—Ph	H	Ph	H	Η	
2-furanyl Ph	H H	Ph 3-MeO—Ph	H Ac	H H	
4-Me—Ph	H	Ph	3-MeO—PhC(O)	Н	
Me	H	Ph	3-MeO—PhC(O)	Η	
4-Me—Ph	H	Ph	4-F—Ph—C(O)	Η	
4-Cl—Ph	H	4-Me—Ph	H E+OC(O)C(O)	Me	
CO ₂ Et 3,4-di-MeO-styryl	H H	Ph Ph	EtOC(O)C(O) H	H H	cis
Styryl	H	Ph	styryl-C(O)	Н	CIS
3-Br—Ph	H	Ph	Н	Η	
Ph	H	4-Me—Ph	Ac	H	
4-MeO-styryl Benxosuccinimidyl- methyl	H H	Ph Ph	Ac H	H	
4-MeO—Ph	H	4-Me—Ph	Н		trans
4-MeO—Ph	H	Ph	4-MeO—Ph—C(O)	H	
3-NO ₂ —Ph cyclopropyl	H H	4-Me—Ph Ph	H cyclopropyl-C(O)	Me H	
Ме	Н	3-MeO—Ph	benzoyl	Н	
4n-propyl	H, $(R^{10} = Me)$	2-Me—Ph	Н	Н	
3-NO ₂ —Ph	H	Ph	H	Н	cis
4-F—PhOCH ₂	H H	Ph Ph	H 2 MaO PhC(O)	H H	
n-Pr 4-Cl—Ph	н Н	Ph Ph	3-MeO—PhC(O) 4-Me—Ph—C(O)	Н	

83

TABLE 4-continued

Ligand Components					
	$R^3, R^4, R^7,$				
R ¹	R ⁹ , and R ¹⁰	R ⁵	R ⁶	R ⁸	Stereo.1
4-Et—Ph	$H,$ $(R^{10} = Me)$	2-Me—Ph	styryl-C(O)	Н	
Styryl	H	Ph	Н	Н	cis
3-Me—Ph	H	Ph	3-Me—Ph—C(O)	Н	CIO
3,4-di-Cl—Ph	H	Ph	Н	Н	cis
3-OH—Ph	H	Ph	3-Br—Ph(CO)	Η	
succinimidylmethyl	H	Ph	H	Η	
4-I—Ph	H	Ph	H	Н	cis
1-naphthylmethyl	H	Ph	H	H	
cyclohexylethyl	H H	Ph Ph	H H	H H	
CO ₂ Et 4-F—Ph	H	Ph	4-F—Ph—C(O)	Н	
4-n-propyl—Ph	Н	Ph	H	Н	
3-F—Ph	H	4-Me—Ph	H	Me	trans
4 - $CH_3S(O_2)NH$ — Ph	H	Ph	H	Η	
NHPh	H	Ph	H	Η	
4-MeO-styryl	H	Ph	H	Н	cis
i-Pr	H	4-NO ₂ —Ph	benzoyl	Н	
3-Cl-benzofuran-2-yl	Н	Ph	3-Cl-	Η	
4-Cl—PhOCH ₂	Н	Ph	benzothiophen-2-yl H	Н	
4-MeO—Ph	H	Ph	4-MeO-styryl	Н	
CF ₃	H	Ph	CF ₃ C(O)	Н	
Et	H	Ph	4-NO ₂ —Ph—C(O)	Η	
Ph	Н,	2-Me—Ph	Н	Η	cis
	$(R^{10} = Me)$				
Me	H	Ph	2-F—Ph—C(O)	Η	
n-pentyl	H	Ph	2-F—Ph—C(O)	H	
4-Me—Ph	$H,$ $(R^{10} = Me)$	2-Me—Ph	Н	Н	cis
3-F-4-Me—Ph	H = Me)	4-Me—Ph	3-F-4-Me—Ph(CO)	Me	trans
3-F-4-CF ₃ —Ph	Н	4-Me—Ph	3-F-4-CF ₃ —Ph—C(O)		trans
4-Cl—Ph	H	Ph	4-Cl—Ph—C(O)	Н	trans
4-Et—Ph	H	Ph	4-Et—Ph—C(O)	Η	trans
4-Cl—Ph	H	4-Me—Ph	4-Cl—Ph—C(O)		trans
4-Et—Ph	H	4-Me—Ph	4-Et—Ph—C(O)		trans
3,4-OCH ₂ O—Ph	H	4-Me—Ph	3,4-OCH ₂ O—Ph—C(O)		trans
3-F-4-Me—Ph	H	4-F—Ph 4-F—Ph	Ac	F F	trans
3-F-4-Me—Ph 3-F-4-Me—Ph	H H	4-F—Ph	3-F-4-Me—Ph(CO) 3-F-4-Me—Ph(CO)	F	trans cis
3-Me—Ph	H	Ph	H	Н	trans
3-F—Ph	Н	Ph	H	Н	trans
3-MeO—Ph	H	Ph	H	Η	trans
3-CF ₃ —Ph	H	Ph	H	Η	trans
3-Me—Ph	H	4-Me—Ph	H	Me	trans
3-F—Ph	H	4-Me—Ph	H		trans
3-MeO—Ph	H	4-Me—Ph	H		trans
3-CF ₃ —Ph 3-Me—Ph	H H	4-Me—Ph 4-F—Ph	H H	F	trans trans
3-F—Ph	Н	4-F—Ph	H	F	trans
3-MeO—Ph	Н	4-F—Ph	H	F	trans
3-CF ₃ —Ph	H	4-F—Ph	H	F	trans
NHEt	H	Ph	H	Η	cis
NHPh	H	Ph	H	H	cis
4-Cl—Ph—NH	H	Ph	H	Н	cis
3-Cl—Ph—NH 4-Me—Ph—NH	Н	Ph Ph	Н	Н	cis
4-Me—Ph—NH 3-Me—Ph—NH	H H	Ph Ph	H H	H H	cis cis
NHPh	H	4-Me—Ph	H	Me	
4-Cl—Ph—NH	Н	4-Me—Ph	Н	Me	
3-Cl—Ph—NH	Н	4-Me—Ph	H	Me	
4-Me—Ph—NH	H	4-Me—Ph	H	Me	
3-Me—Ph—NH	H	4-Me—Ph	H	Me	cis
NHPh	H	4-F—Ph	H	F	cis
4-Cl—Ph—NH	H	4-F—Ph	H	F	cis
3-Cl—Ph—NH	H	4-F—Ph	H	F	cis
4-Me—Ph—NH	H	4-F—Ph	H	F	cis
3-Me—Ph—NH	Н	4-F—Ph	Н	F	cis

¹Relative stereochemistry at 2- and 4-positions

In another embodiment, the activating ligand is a compound having Formula V, VI, or VII:

wherein Q^1 and Q^2 are independently selected from the group consisting of O and S;

n=1 or 2;

 R^1 is selected from the group consisting of (C_1-C_6) alkyl, (C3-C6)cycloalkyl, (C1-C6)haloalkyl, (C3-C6)halocycloalkyl, (C₂-C₆)alkenyl, (C₂-C₆)haloalkenyl, (C₂-C₆) alkynyl, (C₂-C₆)haloalkynyl, (C₁-C₆)alkoxy, (C₃-C₆) 30 (C_3-C_6) (C₁-C₆)haloalkoxy, cycloalkoxy, halocycloalkoxy, (C2-C6)alkenyloxy, alkynyloxy, (C₁-C₆)alkylthio, (C₃-C₆)cycloalkylthio, $(C_1$ - $C_6)$ haloalkylthio, $(C_3$ - $C_6)$ halocycloalkylthio, $(C_1$ - C_6)alkylamino, (C_3-C_6) cycloalkylamino, (C_1-C_6) ha- 35 loalkylamino, (C_3-C_6) halocycloalkylamino, di (C_1-C_6) alkylamino, di(C₃-C₆)cycloalkylamino, di(C₁-C₆) haloalkylamino, di(C₃-C₆)halocycloalkylamino, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₁-C₆)althylthio(C₁-C₆)alkyl, (C_1-C_6) alkylsulfinyl (C_1-C_6) alkyl, (C_1-C_6) alkylsulfo- 40 $\text{nyl}(C_1\text{-}C_6)\text{alkyl},$ (C_1-C_6) alkylamino (C_1-C_6) alkyl, $di(C_1-C_6)alkylamino(C_1-C_6)alkyl, (C_1-C_6)alkylcarbo$ nyl(C₁-C₆)alkyl, cyano(C₁-C₆)alkyl, optionally substituted phenyl, optionally substituted 1-naphthyl, optionally substituted 2-naphthyl, optionally substituted 45 phenyl(C₁-C₃)alkyl, optionally substituted phenyl(C₂- C_3)alkenyl, optionally substituted naphthyl(C_1 - C_3) alkyl, optionally substituted phenoxy(C₁-C₃)alkyl, optionally substituted phenylamino, and optionally substituted heterocycle;

R² and R³ are independently selected from the group consisting of hydrogen, cyano, aminocarbonyl, carboxy, (C_1-C_6) alkyl, (C_3-C_6) cycloalkyl, halo (C_1-C_6) alkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, (C₃-C₆) cycloalkenyl, (C₂-C₆)haloalkenyl, (C₂-C₆)alkynyl, 55 $(C_1\text{-}C_6) alkylsulfonyl, (C_1\text{-}C_6) alkoxy (C_1\text{-}\bar{C_6}) alkyl, (C_1\text{-}\bar{C_6}) alkyl, (C_1\text{-}\bar{C_6}) alkylsulfonyl, (C_1\text{-}\bar{C_6}) alkylsulfony$ C_6)althylthio(C_1 - C_6)alkyl, (C_1-C_6) alkylsulfinyl $(C_1 C_6$)alkyl, (C_1-C_6) alkylsulfonyl (C_1-C_6) alkyl, (C_1-C_6) alkylamino(C_1 - C_6)alkyl, di(C_1 - C_6)alkylamino(C_1 - C_6) alkyl, (C₁-C₆)alkylcarbonyl, (C₁-C₆)alkylcarbonyl(C₁- 60 C₆)alkyl, (C₁-C₆)alkylaminocarbonyl, $di(C_1-C_6)$ alkylaminocarbonyl, (C₁-C₆)alkylaminocarbonyl(C₁ C_6)alkyl, di (C_1-C_6) alkylaminocarbonyl (C_1-C_6) alkyl, (C_1-C_6) alkylcarbonylamino (C_1-C_6) alkyl, $(C_1 - C_6)$ alkoxycarbonyl, (C₁-C₆)alkoxycarbonyl(C₁-C₆)alkyl, 65 cyano(C₁-C₆)alkyl, hydroxy(C₁-C₆)alkyl, carboxy(C₁-C₆)alkyl, optionally substituted phenyl, optionally sub86

stituted phenyl(C_1 - C_6)alkyl, optionally substituted benzoyl, optionally substituted naphthyl, optionally substituted heterocycle, and optionally substituted heterocyclylcarbonyl, or

R² and R³ are joined together with the carbon to which they are attached to form an unsubstituted or substituted, partially unsaturated or saturated optionally substituted 3-, 4-, 5-, 6-, 7- or 8-membered carbocyclic or heterocyclic ring, wherein the heterocyclic ring contains from one to three heteroatoms selected from O, N, or S;

 R^4 is selected from the group consisting of (C_1-C_6) alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)haloalkyl, (C₃-C₆)halocycloalkyl, (C2-C6)alkenyl, (C2-C6)haloalkenyl, (C2-C6) alkynyl, (C_2-C_6) haloalkynyl, (C_1-C_6) alkoxy, (C_3-C_6) cycloalkoxy, (C₁-C₆)haloalkoxy, (C2-C6)alkenyloxy, halocycloalkoxy, alkynyloxy, (C₁-C₆)alkylthio, (C₃-C₆)cycloalkylthio, (C1-C6)haloalkylthio, (C3-C6)halocycloalkylthio, (C1-C₆)alkylamino, (C₃-C₆)cycloalkylamino, (C₁-C₆)haloalkylamino, (C₃-C₆)halocycloalkylamino, di(C₁-C₆) alkylamino, $di(C_3-C_6)$ cycloalkylamino, $di(C_1-C_6)$ haloalkylamino, di(C3-C6)halocycloalkylamino, (C1- $C_6) alkoxy (C_1 - C_6) alkyl, (C_1 - C_6) althylthio (C_1 - C_6) alkyl, \\$ $(C_1\hbox{-} C_6) alkyl sulfinyl (C_1\hbox{-} C_6) alkyl, \quad (C_1\hbox{-} C_6) alkyl sulfo$ $nyl(C_1-C_6)alkyl$, (C_1-C_6) alkylamino (C_1-C_6) alkyl, di(C₁-C₆)alkylamino(C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl(C₁-C₆)alkyl, cyano(C₁-C₆)alkyl, optionally substituted phenyl, optionally substituted 1-naphthyl, optionally substituted 2-naphthyl, optionally substituted phenyl(C₁-C₃)alkyl, optionally substituted phenyl(C₂- C_3)alkenyl, optionally substituted naphthyl(C_1 - C_3) alkyl, optionally substituted phenoxy(C1-C3)alkyl, optionally substituted phenylamino, and optionally substituted heterocycle;

 R^5 is selected from the group consisting of (C_1-C_6) alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆)haloalkyl, (C₃-C₆)halocycloalkyl, (C2-C6)alkenyl, (C2-C6)haloalkenyl, (C2-C6) alkynyl, (C_2-C_6) haloalkynyl, (C_1-C_6) alkoxy (C_1-C_6) (C_1-C_6) althylthio (C_1-C_6) alkyl, alkylsulfinyl (C_1-C_6) alkyl, (C_1-C_6) alkylsulfonyl (C_1-C_6) alkylsulfonyl C_6)alkyl, (C_1-C_6) alkylamino (C_1-C_6) alkyl, $di(C_1-C_6)$ alkylamino (C_1-C_6) alkyl, (C_1-C_6) alkylcarbonyl (C_1-C_6) alkyl, cyano(C1-C6)alkyl, optionally substituted phenyl, optionally substituted 1-naphthyl, optionally substituted 2-naphthyl, optionally substituted phenyl (C_1-C_3) alkyl, optionally substituted phenyl (C_2-C_3) alkenyl, optionally substituted naphthyl(C₁-C₃)alkyl, optionally substituted phenoxy(C₁-C₃)alkyl, optionally substituted phenylamino, and optionally substituted heterocycle; and

R⁶ and R⁷ are independently selected from the group consisting of (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, (C₁-C₆) haloalkyl, (C₃-C₆)halocycloalkyl, (C₂-C₆)alkenyl, C_6)haloalkenyl, (C_2-C_6) alkynyl, (C_2-C_6) haloalkynyl, (C_1-C_6) alkoxy, (C₃-C₆)cycloalkoxy, (C_1-C_6) haloalkoxy, (C₃-C₆)halocycloalkoxy, (C₂-C₆)alkenyloxy, (C_2-C_6) alkynyloxy, (C_1-C_6) alkylthio, (C_3-C_6) cycloalkylthio, (C₁-C₆)haloalkylthio, (C₃-C₆)halocycloalkylthio, (C₁-C₆)alkylamino, (C₃-C₆)cycloalky-(C₁-C₆)haloalkylamino, lamino, halocycloalkylamino, di(C₁-C₆)alkylamino, di(C₃-C₆) cycloalkylamino, di(C₁-C₆)haloalkylamino, di(C₃-C₆) halocycloalkylamino, (C_1 - C_6)alkoxy(C_1 - C_6)alkyl, (C_1 - C_6)althylthio (C_1-C_6) alkyl, (C_1-C_6) alkylsulfinyl (C_1-C_6) alkylsulfinyl C_6)alkyl, (C_1-C_6) alkylsulfonyl (C_1-C_6) alkyl, (C_1-C_6) alkylamino(C_1 - C_6)alkyl, di(C_1 - C_6)alkylamino(C_1 - C_6)

alkyl, (C_1-C_6) alkylcarbonyl (C_1-C_6) alkyl, cyano (C_1-C_6) alkyl, optionally substituted phenyl, optionally substituted phenyl (C_1-C_6) alkyl, optionally substituted heterocycle, optionally substituted phenoxy, optionally substituted phenylthio, optionally substituted heterocyclylthio, optionally substituted naphthyl, optionally substituted phenylamino, optionally substituted heterocyclylamino, optionally substituted heterocyclylamino, optionally substituted N-phenyl-N— (C_1-C_6) alkylamino, and optionally substituted N-heterocyclyl-N— (C_1-C_6) alkylamino.

In another embodiment, the activating ligand is a compound having Formula V, wherein:

 Q^1 is O;

R¹ is substituted phenyl wherein the substituents are independently selected from the group consisting of (C₁-C₂)alkyl and (C₁-C₂)alkoxy; or two adjacent positions are joined together with the atoms to which they are attached to form an unsubstituted or substituted, unsaturated, partially unsaturated, or saturated 5-, 6- or 7-membered carbocyclic or heterocyclic ring, wherein the heterocyclic ring contains from one to two oxygen atoms and one to four substituents are independently selected from the group consisting of: cyano, (C₁-C₂) alkyl, (C₁-C₂)alkylamino, di(C₁-C₂)alkylamino, (C₁-C₂)alkylaminocarbonyl, di(C₁-C₂)alkylaminocarbonyl, oxo, and methoxyimino:

88

 R^2 and R^3 are independently selected from the group consisting of $(C_1\text{-}C_6)$ alkyl, $(C_3\text{-}C_6)$ cycloalkyl, halo $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_3)$ alkoxy $(C_1\text{-}C_3)$ alkyl, $(C_1\text{-}C_3)$ althylthio $(C_1\text{-}C_3)$ alkyl, $(C_1\text{-}C_3)$ alkylsulfinyl $(C_1\text{-}C_3)$ alkylsulfinocarbonyl $(C_1\text{-}C_3)$ alkylsulfinyl $(C_1\text{-}C_3)$ alkylsulfinyl

R² and R³ may be joined together with the carbon to which they are attached to form an unsubstituted or substituted, partially unsaturated or saturated 5-, 6- or 7-membered carbocyclic or heterocyclic ring, wherein the heterocyclic ring contains one heteroatom selected from O or S; and one to four substituents are independently selected from the group consisting of (C₁-C₃) alkyl, (C₁-C₃)alkylamino, di(C₁-C₃)alkylamino, (C₁-C₄)alkoxycarbonyl, (C₁-C₃)alkylaminocarbonyl, and di(C₁-C₃)alkylaminocarbonyl; and

 R^4 is selected from optionally substituted phenyl or pyridyl wherein the substituents are independently selected from the group consisting of (C_1-C_3) alkoxy;

In another embodiment, the activating ligand is a compound having Formula V, wherein Q is oxygen, and R^1 , R^2 , R^3 , and R^4 are defined according to Table 5.

TABLE 5

TABLE 5				
		Ligand Components		
R ¹	\mathbb{R}^2	\mathbb{R}^3	R ⁴	
2-Me-3-MeO—Ph		—(CH ₂) ₄ —	Ph	
2-Me-3-MeO—Ph		—(CH ₂) ₄ —	3-Me—Ph	
4-Et—Ph		—(CH ₂) ₄ —	Ph	
2-Me-3-MeO—Ph		—(CH ₂) ₅ —	3-MeO—Ph	
2-Me-3-MeO—Ph		—(CH ₂) ₄ —	3-MeO—Ph	
2-Me-3-MeO—Ph		—(CH ₂) ₃ —	3-Me—Ph	
2-Me-3-MeO—Ph		—(CH ₂) ₅ —	3-Me—Ph	
2-Me-3-MeO—Ph	$_{\mathrm{Bn}}$	Me	3-Me—Ph	
2-Me-3-MeO—Ph		—(CH ₂) ₂ —	3-Me—Ph	
2-Me-3-MeO—Ph		—(CH ₂) ₄ —	3,5-diMe—Ph	
2-Me-3-MeO—Ph		—(CH ₂) ₅ —	3,5-diMe—Ph	
2-Me-3-MeO—Ph	$_{\mathrm{Bn}}$	Me	3,5-diMe—Ph	
2-Me-3-MeO—Ph		—(CH ₂) ₂ —	3,5-diMe—Ph	
2-Me-3-MeO—Ph		—(CH ₂) ₃ —	3,5-diMe—Ph	
2-Me-3-MeO—Ph	-	—(CH ₂) ₅ —	4-Me—Ph	
2-Me-3-MeO—Ph	$_{\mathrm{Bn}}$	Me	4-Me—Ph	
2-Me-3-MeO—Ph		—(CH ₂) ₄ —	3-Me-4-F—Ph	
2-Me-3-MeO—Ph		—(CH ₂) ₅ —	3-Me-4-F—Ph	
2-Me-3-MeO—Ph	· D	—(CH ₂) ₂ —	3-Me-4-F—Ph	
2-Me-3-MeO—Ph	i-Pr	Me	3,5-diMe—Ph	
2-Et-3-MeO—Ph		—(CH ₂) ₄ —	Ph	
2-Et-3,6-OCH ₂ CH ₂ O—Ph		—(CH ₂) ₄ —	Ph	
2-Me-3,4-OCH ₂ O—Ph		—(CH ₂) ₄ —	Ph	
2-Me-3-MeO—Ph		—(CH ₂) ₂ —	4-Me—Ph	
2-Me-3-MeO—Ph		-CH ₂ CH ₂ OCH ₂ CH ₂ -	3-Me—Ph	
2-Me-3-MeO—Ph		-CH ₂ CH ₂ SCH ₂ CH ₂ -	3-Me—Ph	
2-Me-3-MeO—Ph 2-Me-3-MeO—Ph		—CH ₂ CH ₂ OCH ₂ CH ₂ — —CH ₂ CH ₂ SCH ₂ CH ₂ —	3,5-diMe—Ph 3,5-diMe—Ph	
2-Me-3-MeO—Ph		2 2 2 2	3,5-diMe—Ph	
	: D.	-CH ₂ CH ₂ C(OCH ₂ CH ₂ O)CH ₂ CH ₂ — Me	· ·	
2-Me-3-MeO—Ph	i-Pr		2-MeO—Ph 3-Me—Ph	
2-Me-3-MeO—Ph	i-Pr	Me		
2-Me-3-MeO—Ph	i-Pr	Me	3-MeO—Ph	
2-Me-3-MeO—Ph	i-Pr	Me	4-Me—Ph	
2-Me-3-MeO—Ph	i-Pr	Me	Ph	
2-Me-3-MeO—Ph		-CH ₂ CH ₂ C(OCH ₂ CH ₂ O)CH ₂ CH ₂ —	3-Me—Ph	
2-Me-3-MeO—Ph	Et	Et	2-Me—Ph	
2-Me-3-MeO—Ph	Et	Et	2-MeO—Ph	
2-Me-3-MeO—Ph	Et	Et	4-F—Ph	
2-Me-3-MeO—Ph		—(CH ₂) ₄ —	2-Me—Ph	

TABLE 5-continued

		Ligand Components	
		Ligand Components	
R ¹	R ²	R ³	R ⁴
2-Me-3-MeO—Ph		—(CH ₂) ₄ —	2-MeO—Ph
2-Me-3-MeO—Ph		—(CH ₂) ₄ —	4-MeO—Ph
2-Me-3-MeO—Ph 2-Me-3-MeO—Ph		—(CH ₂) ₄ —	4-F—Ph 3,4-OCH₂O—Ph
2-Me-3-MeO—Ph		—(CH ₂) ₄ — —(CH ₂) ₅ —	2-Me—Ph
2-Me-3-MeO—Ph		—(CH ₂) ₅ —	2-MeO—Ph
2-Me-3-MeO—Ph		—(CH ₂) ₅ —	4-MeO—Ph
2-Me-3-MeO—Ph		—(CH ₂) ₅ —	3,4-OCH ₂ O—Ph
2-Me-3-MeO—Ph	Et	Et	3-Me—Ph
2-Me-3-MeO—Ph 2-Me-3-MeO—Ph	Et Et	Et	3-MeO—Ph
2-Me-3-MeO—Ph	Et	Et Et	3-Me-4-F—Ph 3,5-diMe—Ph
2-Me-3-MeO—Ph	i-Bu	Me	3-Me—Ph
2-Me-3-MeO—Ph	i-Bu	Me	3-MeO—Ph
2-Me-3-MeO—Ph	i-Bu	Me	3-Me-4-F—Ph
2-Me-3-MeO—Ph	i-Bu	Me	3,5-diMe—Ph
2-Me-3-MeO—Ph	i-Pr	Me : D.	3-Me-4-F—Ph
2-Me-3-MeO—Ph 2-Me-3-MeO—Ph	Ph Et	i-Pr Et	3-Me—Ph 4-MeO—Ph
2-Me-3-MeO—Ph	Et	Et	3,4-OCH2O—Ph
2-Me-3-MeO—Ph		—(CH ₂) ₅ —	4-F—Ph
2-Me-3-MeO—Ph		$CH_2CH_2C(=O)CH_2CH_2$	3-Me—Ph
2-Me-3-MeO—Ph		—CH ₂ CH ₂ S(=O) ₂ CH ₂ CH ₂ —	3,5-diMe—Ph
2-Me-3-MeO—Ph	i-Pr	Me	2-Me—Ph
2-Me-3-MeO—Ph		—(CH ₂) ₅ —	2,6-diMeO-3-pyridyl
2-Me-3-MeO—Ph 2-Me-3-MeO—Ph		—(CH ₂) ₄ — —(CH ₂) ₅ —	3,5-diMeO-4-Me—Ph 3,5-diMeO-4-Me—Ph
2-Me-3-MeO—Ph		—(CH ₂) ₅ — —(CH ₂) ₄ —	3-MeO-4,5-diF—Ph
2-Me-3-MeO—Ph		$-(CH_2)_5$	3-MeO-4,5-diF—Ph
2-Me-3-MeO—Ph		—(CH ₂) ₅ —	Ph
2-Me-3-MeO—Ph		—(CH ₂) ₆ —	2-MeO—Ph
2-Me-3-MeO—Ph		—(CH ₂) ₆ —	3,5-diMe—Ph
2-Me-3-MeO—Ph	4-F—Ph	Me	2-MeO—Ph
2-Me-3-MeO—Ph	4-F—Ph		3,5-diMe—Ph
2-Me-3-MeO—Ph	Me	Me	2-MeO—Ph
2-Me-3-MeO—Ph	Me M-	Me	3,5-diMe—Ph
2-Me-3-MeO—Ph 2-Me-3-MeO—Ph	Me Et	Me Et	Ph 4-Me—Ph
2-Me-3-MeO—Ph	Et	Et	Ph
2-Me-3-MeO—Ph	Li	—(CH ₂) ₄ —	4-Me—Ph
2-Et-3,4-OCH ₂ CH ₂ O—Ph		—(CH ₂) ₅ —	3,5-di-Me—Ph
2-Me-3,4-OCH ₂ O—Ph		—(CH ₂) ₅ —	3,5-di-Me—Ph
3,4-OCH ₂ CH ₂ O—Ph		—(CH ₂) ₅ —	3,5-di-Me—Ph
3,4-CH ₂ OCH ₂ O—Ph		—(CH ₂) ₅ —	3,5-di-Me—Ph
2-Et-3,4-OCH ₃ CH ₂ O—Ph		—(CH ₂) ₄ —	3,5-di-Me—Ph
2-Me-3,4-OCH ₂ O—Ph		—(CH ₂) ₄ —	3,5-di-Me—Ph
3,4-OCH ₂ CH ₂ O—Ph		—(CH ₂) ₄ —	3,5-di-Me—Ph
3,4-CH ₂ OCH ₂ O—Ph 3,4-OCH ₂ O—Ph		—(CH ₂) ₄ — —(CH ₂) ₄ —	3,5-di-Me—Ph 3,5-di-Me—Ph
2-Me—Ph		$-(CH_2)_4$ $-(CH_2)_4$	3,5-di-Me—Ph
Ph	t-Bu	Н	4-Cl—Ph
4-Cl—Ph		—(CH ₂) ₄ —	Ph
Me	Ph	H	4-Me—Ph
Me	4-Me—l	Ph H	Ph
Me	Ph	Н	Ph
4-Cl—Ph	Me	Me	Ph
4-Me—Ph	t-Bu	H	Ph
2,3-di-Me—Ph	t-Bu	H H	Ph Ph
4-NO ₂ —Ph 2-Me-3-MeO—Ph	t-Bu	п —(СН ₂) ₂ —	3-MeO—Ph
2-Me-3-MeO—Ph	Benzyl	Me	3-MeO—Ph
2-Me-3-MeO—Ph	Belleyi	—(CH ₂) ₂ —	2-Me—Ph
3-Me-benzofuran-2-yl		—(CH ₂) ₄ —	Ph
Ph	Me	Me	Ph
2-Me—Ph	Me	Me	Ph
3,4-OCH ₂ O—Ph	Me	Me	Ph
3-MeO—Ph	Me	Me	Ph
4-Et—Ph	Me	Me	Ph
2-Me-3-MeO—Ph		CH ₂ CH ₂ N(C(O)OtBu)CH ₂ CH ₂ —	3-Me—Ph
2-Me-3-MeO—Ph		CH ₂ CH ₂ N(C(O)OtBu)CH ₂ CH ₂ —	3,5-di-Me—Ph
2-Me-3-MeO—Ph 2-Me-3-MeO—Ph	i-Pr i-Pr	Me Me	3,4-OCH ₂ O—Ph Me
2-Me-3-MeO—Ph	t-Bu	H	3-Me—Ph
2 1.10 3 1.100 TH	· Lu	**	- 111e - 1 II

91

TABLE 5-continued

Ligand Components					
R^1	\mathbb{R}^2	\mathbb{R}^3	R^4		
2-Me-3-MeO—Ph	t-Bu	Н	3-MeO—Ph		
2-Me-3-MeO—Ph	t-Bu	H	3,5-di-Me—Ph		
2-MeO—Ph	Me	Me	3-Me—Ph		
2-MeO—Ph	Me	Me	3-MeO—Ph		
2-Me-3-MeO—Ph	i-Bu	Me	4-MeO—Ph		
2-MeO—Ph	Me	Me	3,5-di-Me—Ph		
2-Me-3-MeO—Ph		$(CH_2)_5$	n-Bu		
Ph	Me	Me	Et		
3-MeO—Ph	Me	Me	Et		
3,4-OCH ₂ O—Ph	Me	Me	Et		
2-Me—Ph	Me	Me	El		
4-Et—Ph	Me	Me	Et		
Ph	Me	Me	3,5-di-Me—Ph		
2-Me—Ph	Me	Me	3,5-di-Me—Ph		
3-MeO—Ph	Me	Me	3,5-di-Me—Ph		
4-Et—Ph	Me	Me	3,5-di-Me—Ph		
3,4-OCH ₂ O—Ph	Me	Me	3,5-di-Me—Ph		
Ph		-(CH ₂) ₄	Et		
2-Me—Ph		-(CH ₂) ₄	Et Et		
3-MeO—Ph		-(CH ₂) ₄	Et Et		
4-Et—Ph 3,4-OCH ₂ O—Ph		-(CH ₂) ₄ -(CH ₂) ₄	Et		
Ph		-(CH ₂) ₄	3,5-di-Me—Ph		
3-MeO—Ph		-(CH ₂) ₄	3,5-di-Me—Ph		
4-Et—Ph		-(CH ₂) ₄	3,5-di-Me—Ph		
Ph		-(CH ₂) ₄	Ph		
2-Me—Ph		-(CH ₂) ₄	Ph		
3-MeO—Ph		-(CH ₂) ₄	Ph		
3,4-OCH ₂ O—Ph		-(CH ₂) ₄	Ph		
2-Et-3-MeO—Ph		-(CH ₂) ₅	3,5-di-Me—Ph		
2-Et-3-MeO—Ph		-(CH ₂) ₄	3,5-di-Me—Ph		
CF ₃		-(CH ₂) ₄	3,5-di-Me—Ph		
2-Me-3-MeO—Ph	$-CH_2N[(C=C)]$	O)Ot-Bu]CH ₂ CH ₂ CH ₂ —	3,5-di-Me—Ph		
2-Me-3-MeO—Ph	—СH ₂ С	H ₂ NHCH ₂ CH ₂ —	3,5-di-Me—Ph		
2-Me-3-MeO—Ph	CH_2N	HCH ₂ CH ₂ CH ₂ —	3,5-di-Me—Ph		
2-Me-3-MeO—Ph	$CH_2CH_2N[$	$(C=O)CH_3]CH_2CH_2$	3,5-di-Me—Ph		
2-Me-3-MeO—Ph	$CH_2CH_2N[(C=$	=O)(C==O)OEt]CH ₂ CH ₂ -	– 3,5-di-Me—Ph		
2-Me-3-MeO—Ph		$[S(O)_2CH_3]CH_2CH_2$ —	3,5-di-Me—Ph		
2-Me-3-MeO—Ph		$H_2(C=O)OEt]CH_2CH_2$	3,5-di-Me—Ph		
2-Me-3-MeO—Ph		O)CH ₃]CH ₂ CH ₂ CH ₂ —	3,5-di-Me—Ph		
2-Me-3-MeO—Ph		C=O)OEt]CH ₂ CH ₂ CH ₂ -			
2-Me-3-MeO—Ph) ₂ CH ₃]CH ₂ CH ₂ CH ₂ —	3,5-di-Me—Ph		
2-Me-3-MeO—Ph		=O)OCH ₃]CH ₂ CH ₂ CH ₂ —			
2-Me-3-MeO—Ph 2-Me-3-MeO—Ph		C=O)NHEt]CH ₂ CH ₂ -	3,5-di-Me—Ph 3,5-di-Me—Ph		
		C=O)OiPr]CH ₂ CH ₂ —	3,5-di-Me—Ph		
2-Me-3-MeO—Ph 2-Me-3-MeO—Ph		N[CH ₂ CN]CH ₂ CH ₂ — D)NHEt]CH ₂ CH ₂ CH ₂ —	3,5-di-Me—Ph		
2-Me-3-MeO—Ph		CH ₂ N(CH ₃)CH ₂ —	3,5-di-Me—Ph		
		H	· · ·		
2-NH ₂ —Ph 4-Et—Ph	Et		Ph		
		-(CH ₂) ₅	3,5-di-Cl—Ph 2-MeO-5-F—Ph		
2-Me-3-MeO—Ph		-(CH ₂) ₅			
2-Me-3-MeO—Ph 2-Me-3-MeO—Ph		-(CH ₂) ₅	2-MeO-5-Me—Ph		
		-(CH ₂) ₅	2,5-di-MeO—Ph		
2-Me-3-MeO—Ph		-(CH ₂) ₅	4-Me-2-pyridyl		
2-Me-3-MeO—Ph		-(CH ₂) ₅	6-Me-2-pyridyl		
4-Et—Ph		-(CH ₂) ₅	2-MeO-5-F—Ph		
4-Et—Ph		-(CH ₂) ₅	2-MeO-5-Me—Ph		
4-Et—Ph		-(CH ₂) ₅	2,5-di-MeO—Ph		
4-Et—Ph		-(CH ₂) ₅	4-Me-2-pyridyl		
4-Et—Ph		-(CH ₂) ₅	6-Me-2-pyridyl		
4-Et—Ph	_	-(CH ₂) ₅	2-MeO—Ph		
4-Et—Ph		-(CH ₂) ₅	3,5-di-Me—Ph		
4-Et—Ph		-(CH ₂) ₅	3-Me—Ph		
2-Me-3-MeO—Ph	i-Pr	Et	2-MeO—Ph		
2-Me-3-MeO—Ph	i-Pr	Et	3,5-di-Me—Ph		

10

In another embodiment, the activating ligand is a compound having Formula VI, wherein n is 2, and R², R³, R⁴, and R⁵ are defined according to Table 6.

TABLE 6

Ligand Components					
R^2/R^3	\mathbb{R}^4	R ⁵			
—(CH ₂) ₅ — —(CH ₂) ₄ — —(CH ₂) ₅ — —(CH ₂) ₅ —	3,5-di-Me—Ph 3,5-di-Me—Ph 3,5-di-Cl—Ph 3,5-di-Cl—Ph	4H-benzo[1,3]dioxine-6-yl 4-Me—Ph 4-Me—Ph 3-MeO—Ph			

In another embodiment, the activating ligand is a compound having Formula VIII:

wherein:

X and X' are independently O or S;

R¹ is selected from the group consisting of hydrogen, (C_1-C_6) alkyl, (C_1-C_6) haloalkyl, (C_1-C_6) cyanoalkyl, (C_1-C_6) alkoxycarbonyl (C_1-C_6) alkyl, (C_1-C_6) alkoxy, benzyloxy, optionally substituted phenyl, optionally substituted naphthyl wherein the substituents are inde- 35 pendently 1 to 3 halo, nitro, (C_1-C_6) alkoxy, (C_1-C_6) alkyl, or amino, optionally substituted benzothiophene-2-yl, benzothiophene-3-yl, benzofuran-2-yl, benzofuran-3-yl wherein the substituents are independently 1 to 3 halo, nitro, hydroxy, (C_1 - C_6)alkyl, (C_1 - 40 C_6)alkoxy, carboxy, or (C_1-C_6) alkoxycarbonyl $(-CO_2R^a)$, optionally substituted 2-, 3-, or 4-pyridyl wherein the substituents are independently 1 to 3 halo, cyano, nitro, hydroxy, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, or (C₁-C₆)haloalkoxy, optionally substituted 5-membered heterocycle selected from furyl, thiophenyl, triazolyl, pyrrolyl, isopyrrolyl, pyrazolyl, isoimidazolyl, thiazolyl, isothiazolyl, oxazolyl, or isooxazolyl wherein the substituents are independently 1 to 3 halo, nitro, 50 hydroxy, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, carboxy, (C₁-C₆)alkoxycarbonyl (—CO₂R^a), or unsubstituted or substituted phenyl wherein the substituents are independently 1 to 3 halo, nitro, (C₁-C₆)alkyl, (C₁-C₆) haloalkyl, (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, carboxy, 55 (C₁-C₄)alkoxycarbonyl $(--CO_2R^a),$ or (—NR^aR^b), aromatic substituted or unsubstituted phe- $\text{nyl}(C_1-C_6)$ alkyl, phenyl (C_1-C_6) alkoxy (C_1-C_6) alkyl, or phenoxy(C₁-C₆)alkyl wherein the aromatic substituents are independently 1 to 3 halo, nitro, (C₁-C₆) 60 alkoxy, (C₁-C₆)alkyl, or amino, and aromatic substituted or unsubstituted phenylamino, phenyl (C_1-C_6) alkylamino, or phenylcarbonylamino wherein the aromatic substituents are independently 1 to 3 halo, nitro, (C₁-C₆)alkoxy, (C₁-C₆)alkyl, or amino;

wherein R^a , R^b , and R^c are independently H, (C_1-C_6) alkyl, or phenyl;

 R^2 and R^3 are independently H, $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ haloalkyl, $(C_1\text{-}C_6)$ cyanoalkyl, $(C_1\text{-}C_6)$ hydroxyalkyl, $(C_1\text{-}C_6)$ alkoxy $(C_1\text{-}C_6)$ alkyl, phenyl, or together as an alkane linkage $(-(CH_2)_x-)$, an alkyloxylalkyl linkage $(-(CH_2)_y\text{-}O(CH_2)_z-)$, an alkylaminoalkyl linkage $(-(CH_2)_y\text{-}NR^a(CH_2)_z-)$, or an alkylbenzoalkyl linkage $(-(CH_2)_y\text{-}1\text{-}benzo-2\text{-}(CH_2)_z-)$ form a ring with the carbon atom to which they are attached, wherein x=3 to 7, y=1 to 3, z=1 to 3, and R^a is H, $(C_1\text{-}C_6)$ alkyl, or phenyl; and

R⁴ is optionally substituted phenyl, wherein the substituents are independently 1 to 5 H; halo; nitro; cyano; hydroxy; amino ($-NR^aR^b$); (C_1 - C_6)alkyl; (C_1 - C_6)haloalkyl; (C₁-C₆)cyanoalkyl; (C₁-C₆)hydroxyalkyl; (C₁- $\begin{array}{lll} C_6) alkoxy; & phenoxy; & (C_1-C_6) haloalkoxy; & (C_1-C_6) \\ alkoxy(C_1-C_6) alkyl; & (C_1-C_6) alkoxy(C_1-C_6) alkoxy; \end{array}$ (C_1-C_6) alkoxy (C_1-C_6) alkoxy; (C_1-C_6) alkanoyloxy (C_1-C_6) alkyl; (C_2-C_6) alkenyl optionally substituted with halo, cyano, (C₁-C₄) alkyl, or (C₁-C₄)alkoxy; (C₂-C₆)alkynyl optionally substituted with halo or (C₁-C₄)alkyl; formyl; carboxy; (C₁- C_6)alkylcarbonyl; (C_1-C_6) haloalkylcarbonyl; benzoyl; (C_1-C_6) alkoxycarbonyl; (C_1-C_6) haloalkoxycarbonyl; $(C_1 - C_6)$ alkanoyloxy $(-OCOR^a);$ carboxamido $(\text{--CONR}^a \text{R}^b)$; amido $(\text{--NR}^a \text{COR}^b)$; alkoxycarbonylamino (—NR^aCO₂R^b); alkylaminocarbonylamino ($-NR^aCONR^bR^c$); mercapto; (C_1 - C_6)alkylthio; (C_1 - C_6) alkylsulfonyl; (C_1-C_6) alkylsulfoxido $(-S(O)R^a)$; sulfamido (—SO₂NR^aR^b); or optionally substituted phenyl wherein the substituents are independently 1 to 3 halo, nitro, (C_1-C_6) alkoxy, (C_1-C_6) alkyl, or amino; or when two adjacent positions on the phenyl ring are substituted with alkoxy groups, these groups, together with the carbon atoms to which they are attached, may be joined to form a 5- or 6-membered dioxolano (-OCH₂O-) or dioxano (-OCH₂CH₂O-) heterocyclic ring; wherein R^a, R^b, and R^c are independently H, (C_1-C_6) alkyl, or phenyl.

In another embodiment, the activating ligand is a compound having Formula VIII, wherein:

X and X' are O;

R¹ is phenyl, 4-chlorophenyl-, 4-ethylphenyl-, 2-ethyl-3, 4-ethylenedioxyphenyl, 3-fluorophenyl-, 2-fluoro-4-ethylphenyl-, 2-methyl-3-methoxyphenyl-, 2-methylphenyl-, 2-methoxyphenyl-, 2-methoxyphenyl-, 2-nitrophenyl-, 3-mitrophenyl-, 2-furanyl-, benzyl-, benzothiophene-2-yl-, phenylamino-, benzyloxymethyl, phenoxymethyl-, 3-toluoylamino-, benzylamino-, benzoylamino-, ethoxycarbonylethyl-, or 3-chloro-2,2,3,3-tetrafluoroethyl;

R² and R³ are independently methyl, ethyl, or together as a tetramethylene (—(CH2)₄—), 4-pyrano (—CH₂CH₂OCH₂CH₂—), or methylenebenzoethylene (—CH₂-1-benzo-2-CH₂CH₂—) linkage form a ring with the carbon atom to which they are attached; and R⁴ is phenyl, 4-biphenyl, 4-chlorophenyl, 2,4-dimethoxyphenyl, 3,5-dimethylphenyl, 2-methoxyphenyl, 3,4-methylenedioxyphenyl, 3-trifluoromethylphenyl, or 4-trifluromethoxyphenyl;

In another embodiment, the activating ligand is a compound having Formula VIII selected from the group consisting of:

1-[5,5-Dimethyl-3-(3-trifluoromethyl-phenyl)-[1,2,4]oxadiazol-4-yl]-3-phenyl-urea;

N-[3-(3,5-Dimethyl-phenyl)-5,5-dimethyl-[1,2,4]oxadi-65 azol-4-yl]-3-fluoro-benzamide;

Furan-2-carboxylic acid [3-(3,5-dimethyl-phenyl)-1-oxa-2,4-diaza-spiro[4.4]non-2-en-4-yl]-amide;

3-Chloro-N-[3-(3,5-dimethyl-phenyl)-5-ethyl-5-methyl-[1,2,4]oxadiazol-4-yl]-2,2,3,3-tetrafluoro-propionamide;

N-[3-(3,5-Dimethyl-phenyl)-1,8-dioxa-2,4-diaza-spiro [4.5]dec-2-en-4-yl]-4-ethyl-benzamide;

2-Benzyloxy-N-[5,5-dimethyl-3-(3-trifluoromethyl-phenyl)-[1,2,4]oxadiazol-4-yl]-acetamide;

N-[3-(3,5-Dimethyl-phenyl)-1,8-dioxa-2,4-diaza-spiro [4.5]dec-2-en-4-yl]-2-ethyl-3-methoxy-benzamide;

2-Benzyloxy-N-[3-(3,5-dimethyl-phenyl)-1,8-dioxa-2,4-diaza-spiro[4.5]dec-2-en-4-yl]-acetamide;

N-[3-(3,5-Dimethyl-phenyl)-1-oxa-2,4-diaza-spiro[4.4] non-2-en-4-yl]-benzamide;

Furan-2-carboxylic acid [3-(2-methoxy-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-amide;

2-Phenoxy-N-(3-phenyl-1,8-dioxa-2,4-diaza-spiro[4.5] dec-2-en-4-yl)-acetamide;

N-(3-Phenyl-1-oxa-2,4-diaza-spiro[4.4]non-2-en-4-yl)-succinamic acid ethyl ester;

N-[5,5-Dimethyl-3-(3-trifluoromethyl-phenyl)-[1,2,4]ox- $_{20}$ adiazol-4-yl]-benzamide;

2-Ethyl-3-methoxy-N-[3-(2-methoxy-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-benzamide;

1-(3-Benzo[1,3]dioxol-5-yl-5,5-dimethyl-[1,2,4]oxadiazol-4-yl)-3-phenyl-urea;

2-Benzyloxy-N-[3-(2-methoxy-phenyl)-5,5-dimethyl-[1, 2,4]oxadiazol-4-yl]-acetamide;

N-[3-(3,5-Dimethyl-phenyl)-1,8-dioxa-2,4-diaza-spiro [4.5]dec-2-en-4-yl]-benzamide;

N-(3-Biphenyl-4-yl-5,5-dimethyl-[1,2,4]oxadiazol-4-yl)- 30 2-ethyl-3-methoxy-benzamide;

N-[5,5-Dimethyl-3-(3-trifluoromethyl-phenyl)-[1,2,4]oxadiazol-4-yl]-2-phenyl-acetamide;

N-[5,5-Dimethyl-3-(4-trifluoromethoxy-phenyl)-[1,2,4] oxadiazol-4-yl]-2-ethyl-3-methoxy-benzamide;

N-(3-Benzo[1,3]dioxol-5-yl-5,5-dimethyl-[1,2,4]oxadiazol-4-yl)-2-ethyl-3-methoxy-benzamide;

4-Chloro-N-[3-(3,5-dimethyl-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-benzamide;

1-[3-(2-Methoxy-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol- 40 4-yl]-3-phenyl-urea;

4-Ethyl-N-[3-(2-methoxy-phenyl)-5,5-dimethyl-[1,2,4] oxadiazol-4-yl]-benzamide;

1-Phenyl-3-(3-phenyl-1,8-dioxa-2,4-diaza-spiro[4.5]dec-2-en-4-yl)-urea;

N-[5,5-Dimethyl-3-(4-trifluoromethoxy-phenyl)-[1,2,4] oxadiazol-4-yl]-2-phenoxy-acetamide;

2-Phenyl-N-(3-phenyl-1-oxa-2,4-diaza-spiro[4.4]non-2-en-4-yl)-acetamide;

N-[3-(3,5-Dimethyl-phenyl)-1-oxa-2,4-diaza-spiro[4.4] non-2-en-4-yl]-succinamic acid ethyl ester;

N-[5,5-Dimethyl-3-(4-trifluoromethoxy-phenyl)-[1,2,4] oxadiazol-4-yl]-benzamide;

2-Benzyloxy-N-(3-phenyl-1,8-dioxa-2,4-diaza-spiro[4.5] dec-2-en-4-yl)-acetamide;

N-[3-(4-Čhloro-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-4-ethyl-benzamide;

N-[3-(3,5-Dimethyl-phenyl)-1-oxa-2,4-diaza-spiro[4.5]-7,8-benzo-dec-2-en-4-yl]-3-methoxy-2-methyl-benzamide;

N-[3-(2,4-Dimethoxy-phenyl)-5,5-dimethyl-[1,2,4]ox-adiazol-4-yl]-succinamic acid ethyl ester;

N-[3-(3,5-Dimethyl-phenyl)-5-ethyl-5-methyl-[1,2,4]ox-adiazol-4-yl]-benzamide;

N-[3-(3,5-Dimethyl-phenyl)-1-oxa-2,4-diaza-spiro[4.4] non-2-en-4-yl]-4-ethyl-benzamide;

N-[3-(3,5-Dimethyl-phenyl)-1-oxa-2,4-diaza-spiro[4.4] non-2-en-4-yl]-2-phenoxy-acetamide;

N-(5,5-Dimethyl-3-phenyl-[1,2,4]oxadiazol-4-yl)-3-methoxy-2-methyl-benzamide;

N-(3-Phenyl-1,8-dioxa-2,4-diaza-spiro[4.5]dec-2-en-4-yl)-benzamide;

N-[3-(3,5-Dimethyl-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-3-methoxy-2-methyl-benzamide;

N-[3-(3,5-Dimethyl-phenyl)-1-oxa-2,4-diaza-spiro[4.4] non-2-en-4-yl]-2-phenyl-acetamide;

Benzo[b]thiophene-2-carboxylic acid [3-(2-methoxyphenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-amide;

N-[3-(3,5-Dimethyl-phenyl)-1,8-dioxa-2,4-diaza-spiro [4.5]dec-2-en-4-yl]-2-phenoxy-acetamide;

 $\begin{array}{c} N\text{-}[3\text{-}(3,5\text{-}Dimethyl\text{-}phenyl)\text{-}}1\text{-}oxa\text{-}2,4\text{-}diaza\text{-}spiro}[4.4]\\ 15 & \text{non-2-en-4-yl}]\text{-}2\text{-}ethyl\text{-}3\text{-}methoxy\text{-}benzamide}; \end{array}$

2-Benzyloxy-N-[3-(3,5-dimethyl-phenyl)-5-ethyl-5-methyl-[1,2,4]oxadiazol-4-yl]-acetamide;

1-[3-(3,5-Dimethyl-phenyl)-5-ethyl-5-methyl-[1,2,4]oxadiazol-4-yl]-3-phenyl-urea;

2-Benzyloxy-N-[3-(3,5-dimethyl-phenyl)-1-oxa-2,4-diaza-spiro[4.4]non-2-en-4-yl]-acetamide;

1-[3-(3,5-Dimethyl-phenyl)-1,8-dioxa-2,4-diaza-spiro [4.5]dec-2-en-4-yl]-3-phenyl-urea;

N-[5,5-Dimethyl-3-(4-trifluoromethoxy-phenyl)-[1,2,4] 25 oxadiazol-4-yl]-4-ethyl-benzamide;

1-[3-(3,5-Dimethyl-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-3-m-tolyl-urea;

N-[3-(2-Methoxy-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-2-phenoxy-acetamide;

N-[3-(2,4-Dimethoxy-phenyl)-5,5-dimethyl-[1,2,4]ox-adiazol-4-yl]-2-ethyl-3-methoxy-benzamide;

3-Chloro-N-[5,5-dimethyl-3-(3-trifluoromethyl-phenyl)-[1,2,4]oxadiazol-4-yl]-2,2,3,3-tetrafluoro-propionamide;

N-[3-(3,5-Dimethyl-phenyl)-5,5-dimethyl-[1,2,4]oxadi-35 azol-4-yl]-4-ethyl-benzamide;

N-(3-Benzo[1,3]dioxol-5-yl-5,5-dimethyl-[1,2,4]oxadiazol-4-yl)-4-ethyl-benzamide;

3-Chloro-2,2,3,3-tetrafluoro-N-[3-(2-methoxy-phenyl)-5, 5-dimethyl-[1,2,4]oxadiazol-4-yl]-propionamide;

3-Chloro-2,2,3,3-tetrafluoro-N-(3-phenyl-1-oxa-2,4-di-aza-spiro[4.4]non-2-en-4-yl)-propionamide;

2-Benzyloxy-N-[5,5-dimethyl-3-(4-trifluoromethoxy-phenyl)-[1,2,4]oxadiazol-4-yl]-acetamide;

1-[3-(4-Chloro-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-45 yl]-3-phenyl-urea;

N-[3-(3,5-Dimethyl-phenyl)-5-ethyl-5-methyl-[1,2,4]oxadiazol-4-yl]-2-ethyl-3-methoxy-benzamide;

Furan-2-carboxylic acid [5,5-dimethyl-3-(3-trifluoromethyl-phenyl)-[1,2,4]oxadiazol-4-yl]-amide;

Furan-2-carboxylic acid (3-phenyl-1-oxa-2,4-diaza-spiro [4.4]non-2-en-4-yl)-amide;

1-[3-(3,5-Dimethyl-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-3-phenyl-urea;

3-Chloro-N-[3-(4-chloro-phenyl)-5,5-dimethyl-[1,2,4] 55 oxadiazol-4-yl]-2,2,3,3-tetrafluoro-propionamide;

N-[3-(3,5-Dimethyl-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-2-methoxy-benzamide;

2-Ethyl-N-(5-ethyl-5-methyl-3-phenyl-[1,2,4]oxadiazol-4-yl)-3-methoxy-benzamide;

N-[3-(3,5-Dimethyl-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-3-methyl-benzamide;

N-[3-(2,4-Dimethoxy-phenyl)-5,5-dimethyl-[1,2,4]ox-adiazol-4-yl]-2-phenyl-acetamide;

N-[3-(2,4-Dimethoxy-phenyl)-5,5-dimethyl-[1,2,4]ox-65 adiazol-4-yl]-2-phenoxy-acetamide;

N-[3-(3,5-Dimethyl-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-2-ethyl-3-methoxy-benzamide;

N-(3-Benzo[1,3]dioxol-5-yl-5,5-dimethyl-[1,2,4]oxadiazol-4-yl)-2-phenyl-acetamide;

Furan-2-carboxylic acid [3-(4-chloro-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-amide;

N-(3-Benzo[1,3]dioxol-5-yl-5,5-dimethyl-[1,2,4]oxadiazol-4-yl)-succinamic acid ethyl ester;

N-[3-(3,5-Dimethyl-phenyl)-1,8-dioxa-2,4-diaza-spiro [4.5]dec-2-en-4-yl]-2-phenyl-acetamide;

N-[3-(3,5-Dimethyl-phenyl)-1,8-dioxa-2,4-diaza-spiro [4.5]dec-2-en-4-yl]-3-methoxy-2-methyl-benzamide;

Benzo[b]thiophene-2-carboxylic acid [3-(4-chloro-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-amide;

 $1\hbox{-Benzyl-3-[3-(3,5-dimethyl-phenyl)-5,5-dimethyl-[1,2,4]} oxadiazol-4-yl]-urea;$

N-(3-Phenyl-1-oxa-2,4-diaza-spiro[4.4]non-2-en-4-yl)-benzamide:

3-Chloro-N-[3-(3,5-dimethyl-phenyl)-1-oxa-2,4-diaza-spiro[4.4]non-2-en-4-yl]-2,2,3,3-tetrafluoro-propionamide;

N-[3-(3,5-Dimethyl-phenyl)-5,5-dimethyl-[1,2,4] oxadiazol-4-yl]-3-nitro-benzamide;

2-Ethyl-3-methoxy-N-(3-phenyl-1-oxa-2,4-diaza-spiro [4.4]non-2-en-4-yl)-benzamide;

N-[5,5-Dimethyl-3-(3-trifluoromethyl-phenyl)-[1,2,4]oxadiazol-4-yl]-2-ethyl-3-methoxy-benzamide;

Furan-2-carboxylic acid [5,5-dimethyl-3-(4-trifluoromethoxy-phenyl)-[1,2,4]oxadiazol-4-yl]-amide;

1-(5-Ethyl-5-methyl-3-phenyl-[1,2,4]oxadiazol-4-yl)-3-phenyl-urea;

N-[3-(2,4-Dimethoxy-phenyl)-5,5-dimethyl-[1,2,4]ox-adiazol-4-yl]-benzamide;

N-[3-(3,5-Dimethyl-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-2-nitro-benzamide;

N-[3-(4-Chloro-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-2-ethyl-3-methoxy-benzamide;

Furan-2-carboxylic acid (5-ethyl-5-methyl-3-phenyl-[1,2, 4]oxadiazol-4-yl)-amide;

Furan-2-carboxylic acid [3-(2,4-dimethoxy-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-amide;

 $N-(5-Ethyl-5-methyl-3-phenyl-[1,2,4]oxadiazol-4-yl)-2- \quad {\tt 40}\\ phenoxy-acetamide;$

Furan-2-carboxylic acid [3-(3,5-dimethyl-phenyl)-5-ethyl-5-methyl-[1,2,4]oxadiazol-4-yl]-amide;

Benzo[b]thiophene-2-carboxylic acid [5,5-dimethyl-3-(3-trifluoromethyl-phenyl)-[1,2,4]oxadiazol-4-yl]-amide;

Benzo[b]thiophene-2-carboxylic acid [5,5-dimethyl-3-(4-trifluoromethoxy-phenyl)-[1,2,4]oxadiazol-4-yl]-amide;

2-Benzyloxy-N-[3-(2,4-dimethoxy-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-acetamide;

1-Benzoyl-3-[3-(3,5-dimethyl-phenyl)-5,5-dimethyl-[1,2, 50 4]oxadiazol-4-yl]-urea;

 $\begin{array}{lll} 1\text{-}[3\text{-}(3,5\text{-}Dimethyl\text{-}phenyl)\text{-}1\text{-}oxa\text{-}2,4\text{-}diaza\text{-}spiro}[4.4]\\ non-2\text{-}en-4\text{-}yl]\text{-}3\text{-}phenyl\text{-}urea;} \end{array}$

1-[3-(2,4-Dimethoxy-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-3-phenyl-urea;

N-(5,5-Dimethyl-3-phenyl-[1,2,4]oxadiazol-4-yl)-4-ethyl-benzamide;

2-Benzyloxy-N-[3-(4-chloro-phenyl)-5,5-dimethyl-[1,2, 4]oxadiazol-4-yl]-acetamide;

N-(5-Ethyl-5-methyl-3-phenyl-[1,2,4]oxadiazol-4-yl)-benzamide;

N-[3-(3,5-Dimethyl-phenyl)-5-ethyl-5-methyl-[1,2,4]ox-adiazol-4-yl]-2-phenyl-acetamide;

N-[3-(4-Chloro-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-2-phenyl-acetamide;

1-[5,5-Dimethyl-3-(4-trifluoromethoxy-phenyl)-[1,2,4] oxadiazol-4-yl]-3-phenyl-urea;

4-Ethyl-N-(3-phenyl-1,8-dioxa-2,4-diaza-spiro[4.5]dec-2-en-4-yl)-benzamide;

4-Ethyl-N-(3-phenyl-1-oxa-2,4-diaza-spiro[4.4]non-2-en-4-yl)-benzamide;

N-[3-(3,5-Dimethyl-phenyl)-5-ethyl-5-methyl-[1,2,4]ox-adiazol-4-yl]-succinamic acid ethyl ester;

N-(3-Benzo[1,3]dioxol-5-yl-5,5-dimethyl-[1,2,4]oxadiazol-4-yl)-2-phenoxy-acetamide;

N-[3-(3,5-Dimethyl-phenyl)-5-ethyl-5-methyl-[1,2,4]ox-adiazol-4-yl]-4-ethyl-benzamide;

Benzo[b]thiophene-2-carboxylic acid [3-(2,4-dimethoxy-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-amide;

2-Phenyl-N-(3-phenyl-1,8-dioxa-2,4-diaza-spiro[4.5] dec-2-en-4-yl)-acetamide;

1-Phenyl-3-(3-phenyl-1-oxa-2,4-diaza-spiro[4.4]non-2-en-4-yl)-urea;

Benzo[b]thiophene-2-carboxylic acid (5-ethyl-5-methyl-3-phenyl-[1,2,4]oxadiazol-4-yl)-amide;

N-[3-(2,4-Dimethoxy-phenyl)-5,5-dimethyl-[1,2,4]ox-adiazol-4-yl]-4-ethyl-benzamide;

4-Ethyl-N-(5-ethyl-5-methyl-3-phenyl-[1,2,4]oxadiazol-4-yl)-benzamide;

Furan-2-carboxylic acid [3-(3,5-dimethyl-phenyl)-1,8-di-25 oxa-2,4-diaza-spiro[4.5]dec-2-en-4-yl]-amide;

Benzo[b]thiophene-2-carboxylic acid (3-benzo[1,3]di-oxol-5-yl-5,5-dimethyl-[1,2,4]oxadiazol-4-yl)-amide;

N-[3-(3,5-Dimethyl-phenyl)-5-ethyl-5-methyl-[1,2,4]ox-adiazol-4-yl]-2-phenoxy-acetamide;

N-(3-Biphenyl-4-yl-5,5-dimethyl-[1,2,4]oxadiazol-4-yl)-4-ethyl-benzamide;

N-[3-(2-Methoxy-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-succinamic acid ethyl ester;

N-(3-Benzo[1,3]dioxol-5-yl-5,5-dimethyl-[1,2,4]oxadi-35 azol-4-yl)-2-benzyloxy-acetamide;

N-(5-Ethyl-5-methyl-3-phenyl-[1,2,4]oxadiazol-4-yl)-2-phenyl-acetamide;

N-[3-(2-Methoxy-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-benzamide;

N-[5,5-Dimethyl-3-(3-trifluoromethyl-phenyl)-[1,2,4]ox-adiazol-4-yl]-4-ethyl-benzamide;

Furan-2-carboxylic acid (3-benzo[1,3]dioxol-5-yl-5,5-dimethyl-[1,2,4]oxadiazol-4-yl)-amide;

Benzo[b]thiophene-2-carboxylic acid (3-phenyl-1-oxa-2, 4-diaza-spiro[4.4]non-2-en-4-yl)-amide;

N-[3-(4-Chloro-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-vl]-benzamide:

Benzo[b]thiophene-2-carboxylic acid [3-(3,5-dimethyl-phenyl)-1-oxa-2,4-diaza-spiro[4,4]non-2-en-4-yl]-amide;

N-[5,5-Dimethyl-3-(3-trifluoromethyl-phenyl)-[1,2,4]ox-adiazol-4-yl]-succinamic acid ethyl ester;

2-Benzyloxy-N-(5-ethyl-5-methyl-3-phenyl-[1,2,4]ox-adiazol-4-yl)-acetamide;

2-Benzyloxy-N-(3-phenyl-1-oxa-2,4-diaza-spiro[4.4] 55 non-2-en-4-yl)-acetamide;

N-(3-Benzo[1,3]dioxol-5-yl-5,5-dimethyl-[1,2,4]oxadiazol-4-yl)-benzamide;

N-[3-(2-Methoxy-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-2-phenyl-acetamide;

2-Phenoxy-N-(3-phenyl-1-oxa-2,4-diaza-spiro[4.4]non-2-en-4-yl)-acetamide;

2-Ethyl-3-methoxy-N-(3-phenyl-1,8-dioxa-2,4-diaza-spiro[4.5]dec-2-en-4-yl)-benzamide;

N-[5,5-Dimethyl-3-(4-trifluoromethoxy-phenyl)-[1,2,4] 65 oxadiazol-4-yl]-2-phenyl-acetamide;

Benzo[b]thiophene-2-carboxylic acid [3-(3,5-dimethylphenyl)-5-ethyl-5-methyl-[1,2,4]oxadiazol-4-yl]-amide;

N-[3-(4-Chloro-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-2-phenoxy-acetamide;

N-[5,5-Dimethyl-3-(3-trifluoromethyl-phenyl)-[1,2,4]oxadiazol-4-yl]-2-phenoxy-acetamide;

N-[3-(4-Chloro-phenyl)-5,5-dimethyl-[1,2,4]oxadiazol-4-yl]-succinamic acid ethyl ester;

N-[3-(3,5-Dimethyl-phenyl)-5-ethyl-5-methyl-[1,2,4]oxadiazol-4-yl]-4-ethyl-2-fluoro-benzamide;

4-Ethyl-2-fluoro-N-(3-phenyl-1-oxa-2,4-diaza-spiro[4.4] non-2-en-4-yl)-benzamide;

N-[3-(3,5-Dimethyl-phenyl)-1-oxa-2,4-diaza-spiro[4.4] non-2-en-4-yl]-4-ethyl-2-fluoro-benzamide;

N-(5,5-Dimethyl-3-phenyl-[1,2,4]oxadiazol-4-yl)-4-ethyl-2-fluoro-benzamide;

5-Ethyl-2,3-dihydro-benzo[1,4]dioxine-6-carboxylic acid (5,5-dimethyl-3-phenyl-[1,2,4]oxadiazol-4-yl)-amide; and

5-Ethyl-2,3-dihydro-benzo[1,4]dioxine-6-carboxylic acid [3-(3,5-dimethyl-phenyl)-5-ethyl-5-methyl-[1,2,4]oxadiazol-4-yl]-amide.

In another embodiment, the activating ligand is a compound having Formula IX or X:

$$R^1$$
 O R^3 R^2 O R^3 Or R^4 R^5

wherein R^1 , R^2 , R^3 , and R^4 are each independently: a) H, $(C_1$ - C_6)alkyl; $(C_1$ - C_6)haloalkyl; $(C_1$ - C_6)cyanoalkyl; $(C_1$ - C_6)hydroxyalkyl; $(C_1$ - C_4)alkoxy $(C_1$ - C_6)alkyl; $(C_2$ - C_6)alkenyl optionally substituted with halo, cyano, bydroxyal, or (C_1, C_2) alkyl; (C_1, C_2) alkyly, estimally

 (C_2-C_6) alkenyl optionally substituted with halo, cyano, hydroxyl, or (C_1-C_4) alkyl; (C_2-C_6) alkynyl optionally substituted with halo, cyano, hydroxyl, or (C_1-C_4) alkyl; 60 (C_3-C_5) cycloalkyl optionally substituted with halo, cyano, hydroxyl, or (C_1-C_4) alkyl; oxiranyl optionally substituted with halo, cyano, or (C_1-C_4) alkyl; or

b) unsubstituted or substituted benzyl wherein the substituents are independently 1 to 5 H, halo, nitro, cyano, 65 hydroxyl, (C_1-C_6) alkyl, or (C_1-C_6) alkoxy; and R^5 is H; OH; F; Cl; or (C_1-C_6) alkoxy.

In another embodiment, the activating ligand is a compound selected from the group consisting of 20-hydroxyecdysone-2-methyl ether; 20-hydroxyecdysone-3methyl ether; 20-hydroxyecdysone-14-methyl ether; 20-hydroxyecdysone-2,22-dimethyl 20-hvdroxyecdysone-3,22-dimethyl ether; 20-hydroxyecdysone-14,22-dimethyl ether; 20-hydroxyecdysone-22,25-dimethyl ether; 20-hydroxyecdysone-2,3,14,22-tetramethyl ether; 20-hydroxyecdysone-22-n-propyl ether: droxyecdysone-22-n-butyl ether; 20-hydroxyecdysone-22allyl ether; 20-hydroxyecdysone-22-benzyl ether; 20-hydroxyecdysone-22-(28R,S)-2'-ethyloxiranyl ponasterone A-2-methyl ether; ponasterone A-14-methyl ether; ponasterone A-22-methyl ether; ponasterone A-2,22dimethyl ether; ponasterone A-3,22-dimethyl ether; ponasterone A-14,22-dimethyl ether; dacryhainansterone-22methyl ether; 25,26-didehydroponasterone A (isostachysterone C ($\Delta 25(26)$)); shidasterone (stachysterone D); stachysterone C; 22-deoxy-20-hydroxyecdysone (taxister-20 one); ponasterone A; polyporusterone B; 22-dehydro-20hydroxyecdysone; 20-hydroxyecdysone; (25R)-inokosterone; (25S)-inokosterone; pinnatasterone; 25-fluoroponasterone A; 24(28)-dehydromakisterone A; 24-epi-makisterone A: makisterone A: IX 25 droxyecdysone-22-methyl ether; 20-hydroxyecdysone-25methyl ether; abutasterone; 22,23-di-epi-geradiasterone; 20,26-dihydroxyecdysone (podecdysone C); 24-epi-abutasterone; geradiasterone; 29-norcyasterone; ajugasterone B; 24(28)[Z]-dehydroamarasterone B; amarasterone A; makisterone C; rapisterone C; 20-hydroxyecdysone-22,25-dimethyl ether; 20-hydroxyecdysone-22-ethyl ether; carthamos-24(25)-dehydroprecyasterone; leuzeasterone; terone: cyasterone; 20-hydroxyecdysone-22-allyl ether; 24(28) [Z]dehydro-29-hydroxymakisterone C; 20-hydroxyecdysone-22-acetate; viticosterone E (20-hydroxyecdysone 25-ac-20-hydroxyecdysone-22-n-propyl 24-hydroxycyasterone; ponasterone A 22-hemisuccinate; 22-acetoacetyl-20-hydroxyecdysone; canescensterone; 20-hydroxyecdysone-22-hemisuccinate; inokosterone-26-X 40 hemisuccinate; 20-hydroxyecdysone-22-benzoate; 20-hydroxyecdysone-22-β-D-glucopyranoside; 20-hvdroxyecdysone-25-β-D-glucopyranoside; sileneoside A (20hydroxyecdysone-22α-galactoside); 3-deoxy-1β,20dihydroxyecdysone (3-deoxyintegristerone 2-deoxyintegristerone A; 1-epi-integristerone A; integristerone A; sileneoside C (integristerone A 22α-galactoside); 2,22-dideoxy-20-hydroxyecdysone; 2-deoxy-20-hydroxyecdysone; 2-deoxy-20-hydroxyecdysone-3-acetate; 2-deoxy-20,26-dihydroxyecdysone; 2-deoxy-20-hy-50 droxyecdysone-22-acetate; 2-deoxy-20-hydroxyecdysone-3,22-diacetate; 2-deoxy-20-hydroxyecdysone-22-benzoate; ponasterone A 2-hemisuccinate; 20-hydroxyecdysone-2-ac-20-hydroxyecdysone-2-hemisuccinate; droxyecdysone-2-β-D-glucopyranoside; 2-dansyl-20-hydroxyecdysone; 20-hydroxyecdysone-2,22-dimethyl ether; ponasterone A 3β-D-xylopyranoside (limnantheoside B); 20-hydroxyecdysone-3-methyl ether; 20-hydroxyecdysone-3-acetate; 20-hydroxyecdysone-3β-D-xylopyranoside (limnantheoside A); 20-hydroxyecdysone-3-β-D-glucopyranoside; sileneoside D (20-hydroxyecdysone- 3α -galactoside); 20-hydroxyecdysone 3-β-D-glucopyranosyl-[1-3]-β-D-xylopyranoside (limnantheoside C); cyasterone-3-acetate; 2-dehydro-3-epi-20-hydroxyecdysone; 3-epi-20-hy-

droxyecdysone (coronatasterone); rapisterone D; 3-de-

hydro-20-hydroxyecdysone; 5β-hydroxy-25,26-didehydro-

25-deoxypolypodine B; polypodine B; 25-fluoropolypodine

A;

ponasterone

5β-hydroxystachysterone

B; 5β-hydroxyabutasterone; 26-hydroxypolypodine B; 29-norsengosterone, sengosterone; 6β-hydroxy-20-hydroxyecdysone; 6α-hydroxy-20-hydroxyecdysone; 20-hydroxyecdysone-6-oxime; ponasterone A 6-carboxymethyl-20-hydroxyecdysone-6-carboxymethyloxime; 5 oxime: ajugasterone C; rapisterone B; muristerone A; atrotosterone B; atrotosterone A; turkesterone-2-acetate; punisterone (rhapontisterone); turkesterone; atrotosterone C; 25-hydroxyatrotosterone B; 25-hydroxyatrotosterone A; paxillosterone; turkesterone-2,22-diacetate; turkesterone-22-acetate; 10 turkesterone- 11α -acetate; turkesterone-2,11α-diacetate; turkesterone- 11α -propionate; turkesterone- 11α -butanoate; turkesterone- 11α -hexanoate; turkesterone- 11α -decanoate; turkesterone- 11α -laurate: turkesterone- 11α -myristate: turkesterone-11α-arachidate, 22-dehydro-12β-hydroxynors- 15 engosterone; 22-dehydro-12β-hydroxycyasterone; 22-dehydro- 12β -hydroxysengosterone; 14-deoxy(14α -H)-20-hydroxyecdysone; 20-hydroxyecdysone-14-methyl ether; 14αperhydroxy-20-hydroxyecdysone; 20-hydroxyecdysone-2, 3.14.22-tetramethyl (20S)-22-deoxy-20,21- 20 ether: dihydroxyecdysone; 22,25-dideoxyecdysone; (22S)-20-(2, 2'-dimethylfuranyl)ecdysone; (22R)-20-(2,2'dimethylfuranyl)ecdysone; 22-deoxyecdysone; 25-deoxyecdysone; 22-dehydroecdysone; ecdysone; 22-epiecdysone; 24-methylecdysone (20-deoxymakisterone A); 25 ecdysone-22-hemisuccinate; 25-deoxyecdysone-22-β-Dglucopyranoside; ecdysone-22-myristate; 22-dehydro-20iso-ecdysone; 20-iso-ecdysone; 20-iso-22-epi-ecdysone; 2-deoxyecdysone; sileneoside E (2-deoxyecdysone 3β-glucoside, blechnoside A); 2-deoxyecdysone-22-acetate; 2-de- 30 oxyecdysone-3,22-diacetate; 2-deoxyecdysone-22-β-D-glucopyranoside; 2-deoxyecdysone 25-β-D-glucopyranoside; 2-deoxy-21-hydroxyecdysone; 3-epi-22-iso-ecdysone; 3-dehydro-2-deoxyecdysone (silenosterone); droecdysone; 3-dehydro-2-deoxyecdysone-22-acetate; 35 ecdysone-6-carboxymethyloxime; ecdysone-2,3-acetonide; 14-epi-20-hydroxyecdysone-2,3-acetonide; droxyecdysone-2,3-acetonide; 20-hydroxyecdysone-20,22-14-epi-20-hydroxyecdysone-2,3,20,22-diacetonide; paxillosterone-20,22-p-hydroxybenzylidene acetal; 40 poststerone; (20R)-dihydropoststerone; (20S)dihydropoststerone; poststerone-20-dansylhydrazine; (20S)-dihydropoststerone-2,3,20-tribenzoate; (20R)-dihydropoststerone-2,3, 20-tribenzoate; (20R)dihydropoststerone-2,3-acetonide; (20S)dihydropoststerone-2,3-acetonide; (5α-H)-dihydroru- 45 brosterone; 2,14,22,25-tetradeoxy- 5α -ecdysone; 5α -ketobombycosterol: 2α.3α.22S.25-tetrahydroxy-5αcholestan-6-one; $(5\alpha-H)$ -2-deoxy-21-hydroxyecdysone; castasterone; 24-epi-castasterone; (5α□-H)-2-deoxyintegristerone A; (5α-H)-22-deoxyintegristerone A; (5α-H)-20- 50 hydroxyecdysone; 24,25-didehydrodacryhaninansterone; 25,26-didehydrodacryhainansterone; 5-deoxykaladasterone (dacryhainansterone); (14α-H)-14-deoxy-25-hydroxydacryhainansterone; 25-hydroxydacryhainansterone; rubrosterone; (5β-H)-dihydrorubrosterone; dihydrorubrosterone- 55 17β-acetate; sidisterone; 20-hydroxyecdysone-2,3,22triacetate; 14-deoxy(14β-H)-20-hydroxyecdysone; 14-epi-20-hydroxyecdysone; $9\alpha,20$ -dihydroxyecdysone; malacosterone, 2-deoxypolypodine B-3-β-D-glucopyranoside; ajugalactone; cheilanthone B; 2β,3β,6α-trihydroxy- 60 5β-cholestane; 2β,3β,6β-trihydroxy-5β-cholestane; 14-dehydroshidasterone; stachysterone B; 2β,3β,9α,20R,22R,25hexahydroxy-5β-cholest-7,14-dien-6-one; kaladasterone; (14β-H)-14-deoxy-25-hydroxydacryhainansterone; hydro-20-hydroxyecdysone; 14-methyl-12-en-shidasterone; 65 14-methyl-12-en-15,20-dihydroxyecdysone; podecdysone B; 2β , 3β , 20R, 22R-tetrahydroxy-25-fluoro-5 β -cholest-8, 14102

dien-6-one (25-fluoropodecdysone B); calonysterone; 14-deoxy-14,18-cyclo-20-hydroxyecdysone; 9α ,14 α -epoxy-20-hydroxyecdysone; $9\beta\alpha$,14 β -epoxy-20-hydroxyecdysone; 9α ,14 α -epoxy-20-hydroxyecdysone 2,3,20, 22-diacetonide; 28-homobrassinolide; and isohomobrassinolide.

The disclosure of all patents, patent applications, and publications cited herein are incorporated by reference in their entireties.

The following examples are illustrative, but not limiting, of the methods of the present invention. Other suitable modifications and adaptations of the variety of conditions and parameters normally encountered in medical treatment and gene expression systems and which are obvious to those skilled in the art are within the spirit and scope of the invention.

Pharmaceutical Compositions

In certain embodiments, polynucleotides and polypeptides of the invention can be administered as part of a medicament or pharmaceutical composition. Medicaments and pharmaceutical compositions of the invention comprise one or more pharmaceutically acceptable carriers, diluents, excipients or additives.

The term "excipient" as used herein is typically an inert substance added to a composition to facilitate processing, handling, administration, et cetera of a pharmaceutically acceptable composition. Useful excipients include, but are not limited to, adjuvants, anti-adherents, binders, carriers, disintegrants, fillers, flavors, colors, diluents, lubricants, glidants, preservatives, sorbents, solvents, surfactants, and sweeteners.

A few examples of pharmaceutically acceptable carriers, diluents, excipients and additives include, without limitation, water, saline, Ringer's solution, dextrose solution, buffers (such as phosphates (e.g., calcium phosphates such as tricalcium phosphate or calcium hydrogen phosphate)), citrate, succinate, acetic acid, and other organic acids or their salts), antioxidants, proteins and other high molecular weight molecules (such as serum albumin, gelatin, or immunoglobulins), hydrophilic polymers (such as polyvinylpyrrolidone), amino acids (such as glycine, glutamic acid, aspartic acid, and arginine), saccharides (for example monosaccharides, disaccharides, lactose, sucrose, mannitol, sorbitol, other carbohydrates and sugar-alcohols, cellulose or its derivatives, glucose, mannose, and dextrins), chelating agents (such as EDTA); sugar alcohols (such as mannitol or sorbitol), counterions (such as sodium), surfactants (such as polysorbates, poloxamers, or polyethylene glycol (PEG)), and binders (such as starch paste (e.g., maize starch, wheat starch, rice starch, potato starch)), gelatin, tragacanth, methyl cellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, and/or polyvinyl pyrrolidone).

Pharmaceutically acceptable carriers, diluents, excipients and additives may include: disintegrating agents such as the above-mentioned starches as well as compounds such as carboxymethyl-starch, cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof, such as sodium alginate; and, flow-regulating agents and lubricants, for example, silica, talc, stearic acid or salts thereof, such as magnesium stearate or calcium stearate, and/or polyethylene glycol. In one embodiment, dragee cores are provided with suitable coatings which, if desired, are resistant to gastric juices. For this purpose, concentrated saccharide solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, polyethylene glycol and/or titanium dioxide, lacquer solutions and suitable organic solvents or solvent mixtures. In order to produce coatings resistant to

gastric juices, solutions of suitable cellulose preparations such as acetylcellulose phthalate or hydroxypropylmethylcellulose phthalate, are used. Dye stuffs or pigments may be added to the tablets or dragee coatings, for example, for identification or in order to characterize combinations of 5 active compound doses.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer such as glycerol or sorbitol. The push-fit capsules can contain the active compounds in the form of granules or nanoparticles which may optionally be mixed with fillers such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In one embodiment, the is dissolved or suspended in suitable liquids, such as fatty oils, or liquid paraffin, optionally with stabilizers.

Fatty oils may comprise mono-, di- or triglycerides. Mono-, di- and triglycerides include those that are derived 20 from C6, C8, C10, C12, C14, C16, C18, C20 and C22 acids. Exemplary diglycerides include, in particular, diolein, dipalmitolein, and mixed caprylin-caprin diglycerides. Preferred triglycerides include vegetable oils, fish oils, animal fats, hydrogenated vegetable oils, partially hydrogenated 25 vegetable oils, synthetic triglycerides, modified triglycerides, fractionated triglycerides, medium and long-chain triglycerides, structured triglycerides, and mixtures thereof. Exemplary triglycerides include: almond oil; babassu oil; borage oil; blackcurrant seed oil; canola oil; castor oil; 30 coconut oil; corn oil; cottonseed oil; evening primrose oil; grapeseed oil; groundnut oil; mustard seed oil; olive oil; palm oil; palm kernel oil; peanut oil; rapeseed oil; safflower oil; sesame oil; shark liver oil; soybean oil; sunflower oil; hydrogenated castor oil; hydrogenated coconut oil; hydro- 35 genated palm oil; hydrogenated soybean oil; hydrogenated vegetable oil; hydrogenated cottonseed and castor oil; partially hydrogenated soybean oil; partially soy and cottonseed oil; glyceryl tricaproate; glyceryl tricaprylate; glyceryl tricaprate; glyceryl triundecanoate; glyceryl trilaurate; glyc- 40 eryl trioleate; glyceryl trilinoleate; glyceryl trilinolenate; glyceryl tricaprylate/caprate; glyceryl tricaprylate/caprate/ laurate; glyceryl tricaprylate/caprate/linoleate; and glyceryl tricaprylate/caprate/stearate.

In one embodiment, the triglyceride is the medium chain 45 triglyceride available under the trade name LABRAFAC CC. Other triglycerides include neutral oils, e.g., neutral plant oils, in particular fractionated coconut oils such as known and commercially available under the trade name MIGLYOL, including the products: MIGLYOL 810; MIG-50 LYOL 812; MIGLYOL 818; and CAPTEX 355. Other triglycerides are caprylic-capric acid triglycerides such as known and commercially available under the trade name MYRITOL, including the product MYRITOL 813. Further triglycerides of this class are CAPMUL MCT, CAPTEX 55 200, CAPTEX 300, CAPTEX 800, NEOBEE M5 and MAZOL 1400

Pharmaceutical compositions comprising triglycerides may further comprise lipophilic and/or hydrophilic surfactants which may form clear solutions upon dissolution with 60 an aqueous solvent. One such surfactant is tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS). Examples of such compositions are described in U.S. Pat. No. 6,267, 985.

In another embodiment, the pharmaceutically acceptable 65 carrier comprises LABRASOL (Gattefosse SA), which is PEG-8 caprylic/capric glycerides. In another embodiment,

104

the pharmaceutically acceptable carrier comprises PL90G, vitamin E TPGS, and Miglyol 812N.

Pharmaceutical compositions can be administered in any suitable manner as determined by those skilled in the art, such as, but without limitation, by oral, rectal, vaginal, topical (including dermal, buccal and sublingual), parenteral, intravenous, intraperitoneal, intramuscular, intratumoral, intraarticular, subcutaneous, intranasal, inhalation, intradermal, intrathecal, epidural, and by naso-gastric routes.

Methods and compositions for preparation, formulation, and delivery of pharmaceutically acceptable compositions and medicaments are well-known and routinely practiced by those skilled in the art. A few examples of textbooks and manuals providing information and instruction on such methods and compositions include: Rowe et al. (Editor), "Handbook of Pharmaceutical Excipients," Pharmaceutical Press, 6th Ed. (August 2009); University of the Sciences in Philadelphia (Editor), "Remington: The Science and Practice of Pharmacy," Lippincott Williams & Wilkins, 21st Ed. (2005); "Physicians' Desk Reference 2011," PDR Network (2010); "Physicians' Desk Reference 2012," PDR Network (2011); O'Neil, "The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals," 14th Ed. (2006); Allen et al. (Editor) "Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems," Lippincott Williams & Wilkins; 9th Ed. (2011); and, Ash et al. (Editor), "Handbook of Pharmaceutical Additives, Third Edition," Synapse Information Resources, Inc.; 3rd Ed. (2007).

Protocols for general molecular biology methods can be found in: *Methods in Molecular Biology*, series editor J M Walker, Humana Press, New York.

Embodiments of the invention comprise any amino acid substituted form of PE as indicated by, or represented in, Table 13. Embodiments of the invention further comprise any amino acid substituted form of PE which may comprise any combination of amino acid substitutions indicated by, or represented in, Table 13.

Embodiments of the invention also comprise variants, derivatives, or biologically active fragments of any amino acid substituted form of PE as indicated by, or represented in, Table 13, wherein said variant, derivative, or biologically active fragment of PE is at least 80% identical, at least 85% identical, at least 90% identical, at least 95% identical, at least 97% identical, at least 98% identical, at least 99% identical, or is at least 100% identical to an amino acid substituted form of PE, or a fragment thereof, as indicated by, or represented in, Table 13. For example, embodiments of the invention comprise variants, derivatives, or biologically active fragments of any amino acid substituted form of PE as indicated by, or represented in, Table 13, wherein said variant, derivative, or biologically active fragment of PE is at least 80% identical, at least 85% identical, at least 90% identical, at least 95% identical, at least 97% identical, at least 98% identical, at least 99% identical, or is at least 100% identical to PE constructs, or fragments thereof, as represented by pIEX02-003 through pIEX02-248 in Table 13 (such as, for example, as shown in SEQ ID NO:177 (pIEX02-228), SEQ ID NO:178 (pIEX02-244), and SEQ ID NO: 179 (pIEX02-246)).

Embodiments of the invention include methods of making, methods of using, methods of treatment using, medicaments comprising, pharmaceutically acceptable compositions comprising, therapeutically useful compositions comprising, and kits comprising any of the amino acid substituted forms of PE referenced, or otherwise described or provided for, herein.

Embodiments of the invention also include (where "E" indicates "embodiment"):

E1. An isolated polypeptide having *Pseudomonas* exotoxin A biological activity, wherein said polypeptide comprises an epitope selected from the group consisting of:

a) ISFSTRGTQ;	(SEQ ID NO: 5)
b) GTQNWTVER;	(SEQ ID NO: 6)
c) IVFGGVRAR;	(SEQ ID NO: 7)
d) ARSQDLDAI;	(SEQ ID NO: 8)
e) LRVYVPRSS;	(SEQ ID NO: 9)
f) IPDKEQAIS;	(SEQ ID NO: 10)
g) ISFSTRGTQNWTVER;	(SEQ ID NO: 131)
h) IVFGGVRARSQDLDAI	25 (SEQ ID NO: 132)

- wherein one or more amino acid residues in any one or more of said epitopes in a) through h) are substituted with a different amino acid residue.
- E2. An isolated polypeptide having *Pseudomonas* exotoxin A biological activity, wherein said polypeptide comprises an epitope selected from the group consisting of:
 - a) ISFSTRGTQ (SEQ ID NO:5), wherein amino acid ³⁵ residues at one or more of positions 1, 6 and 9 are substituted with a different amino acid residue;
 - b) GTQNWTVER (SEQ ID NO:6), wherein amino acid residues at one or more of positions 3, 4 and 6 are substituted with a different amino acid residue; 40
 - c) IVFGGVRAR (SEQ ID NO:7), wherein amino acid residues at one or more of positions 1 and 6 are substituted with a different amino acid residue;
 - d) ARSQDLDAI (SEQ ID NO:8), wherein amino acid residues at one or more of positions 4 and 7 are 45 substituted with a different amino acid residue;
 - e) LRVYVPRSS (SEQ ID NO:9), wherein amino acid residues at one or more of positions 1, 2 and 9 are substituted with a different amino acid residue;
 - f) IPDKEQAIS (SEQ ID NO:10), wherein amino acid 50 residues at one or more of positions 1, 4, 6 and 7 are substituted with a different amino acid residue;
 - g) ISFSTRGTQNWTVER (SEQ ID NO:131), wherein amino acid residues at one or more of positions 1, 6,
 9, 10 and 12 are substituted with a different amino 55 acid residue; and
 - h) IVFGGVRARSQDLDAI (SEQ ID NO: 132), wherein amino acid residues at one or more of positions 1, 6, 11, and 14 are substituted with a different amino acid residue.
- E3. The isolated polypeptide of embodiment E1 or E2, wherein said different amino acid residue is a conservative amino acid substitution.
- E4. The isolated polypeptide of embodiment E3, wherein said conservative amino acid substitution is one or 65 more substitutions selected from the group consisting of:

- a) A is substituted with any one of G, I, L, S, T or V;
- b) D is substituted with E;
- c) I is substituted with any one of L, M or V;
- d) K is substituted with any one of H or R;
- e) L is substituted with any one of A, G, I, M or V;
- f) N is substituted with any one of S, T or Q;
- g) Q is substituted with any one of S, T or N;
- h) R is substituted with any one of K or H;
- i) S is substituted with any one of A, G, N, T or Q;
- j) T is substituted with any one of A, G, N, Q or S; and
- k) V is substituted with any one of A, G, I, L or M.
- E5. An isolated polypeptide having *Pseudomonas* exotoxin A biological activity, wherein said polypeptide comprises an epitope selected from the group consisting of:
 - a) ISFSTRGTQ (SEQ ID NO:5), wherein amino the acid residue at position 1 (I) is substituted with A, N, T, Q or H, or wherein the amino acid residue at position 6 (R) is substituted with Q, or wherein the amino acid residue at position 9 (Q) is substituted with N or T, or wherein the amino acid sequence ISFSTRGTQ (SEQ ID NO:5) comprises two or more of said substitutions in any combination;
 - b) GTQNWTVER (SEQ ID NO:6), wherein the amino acid residue at position 3 (Q) is substituted with N or T, wherein amino the acid residue at position 4 (N) is substituted with K or R, or wherein the amino acid residue at position 6 (T) is substituted with K or R, or wherein the amino acid sequence GTQNWTVER (SEQ ID NO:6) comprises two or more of said substitutions in any combination;
 - c) IVFGGVRAR (SEQ ID NO:7), wherein amino the acid residue at position 1 (I) is substituted with A or N, or wherein the amino acid residue at position 6 (V) is substituted with D, M, or N, or wherein the amino acid sequence IVFGGVRAR (SEQ ID NO:7) comprises substitutions at both positions in any combination of amino acid residues A or N at position 1 (I) and D, M, or N at position 6 (V);
 - d) ARSQDLDAI (SEQ ID NO:8), wherein amino the acid residue at position 4 (Q) is substituted with K or R, or wherein the amino acid residue at position 7 (D) is substituted with K or R, or wherein the amino acid sequence ARSQDLDAI (SEQ ID NO:8) comprises substitutions with K or R in any combination at both positions 4 (Q) and 7 (D);
 - e) LRVYVPRSS (SEQ ID NO:9), wherein amino the acid residue at position 1 (L) is substituted with A, or wherein the amino acid residue at position 2 (R) is substituted with D, S or A, or wherein the amino acid residue at position 9 (S) is substituted with D, E, N, K, P or T, or wherein the amino acid sequence LRVYVPRSS (SEQ ID NO:9) comprises two or more of said substitutions in any combination;
 - f) IPDKEQAIS (SEQ ID NO:10), wherein amino acid residues at one or more of positions 1, 4, 6 and 7 are substituted with a different amino acid residue. wherein amino the acid residue at position 1 (I) is substituted with A, N, T, Q or H, or wherein the amino acid residue at position 4 (K) is substituted with T, or wherein the amino acid residue at position 6 (Q) is substituted with D, or wherein the amino acid residue at position 7 (A) is substituted with D, or wherein the amino acid sequence IPDKEQAIS (SEQ ID NO:10) comprises two or more of said substitutions in any combination;

- g) ISFSTRGTQNWTVER (SEQ ID NO:131), wherein amino acid residues at one or more of positions 1, 6, 9, 10 and 12 are substituted with a different amino acid residues wherein amino the acid residue at position 1 (I) is substituted with A, N, T, Q or H, or 5 wherein the amino acid residue at position 6 (R) is substituted with Q, or wherein the amino acid residue at position 9 (Q) is substituted with N or T, or wherein amino the acid residue at position 10 (N) is substituted with K or R, or wherein the amino acid residue at position 12 (T) is substituted with K or R, or wherein the amino acid sequence ISFSTRGTQN-WTVER (SEQ ID NO: 131) comprises two or more of said substitutions in any combination; and
- h) IVFGGVRARSQDLDAI (SEQ ID NO:132), 15 wherein amino the acid residue at position 1 (I) is substituted with A or N, or wherein the amino acid residue at position 6 (V) is substituted with D, M, or N, wherein amino the acid residue at position 11 (Q) is substituted with K or R, or wherein the amino acid 20 residue at position 14 (D) is substituted with K or R, or wherein the amino acid sequence IVFGGVRAR-SQDLDAI (SEQ ID NO:132) comprises two or more of said substitutions in any combination.
- E6. An isolated polypeptide having *Pseudomonas* exo- 25 toxin A biological activity, wherein said polypeptide comprises an epitope selected from the group consisting of:
 - a) I at position 141 is a different amino acid;
 - b) R at position 146 is a different amino acid;
 - c) Q at position 149 is a different amino acid;
 - d) N at position 150 is a different amino acid;
 - e) T at position 152 is a different amino acid;
 - f) I at position 184 is a different amino acid;
 - g) V at position 189 is a different amino acid;
 - h) Q at position 194 is a different amino acid;
 - i) D at position 197 is a different amino acid;
 - j) L at position 233 is a different amino acid;
 - k) R at position 234 is a different amino acid;
 - 1) S at position 241 is a different amino acid;
 - m) I at position 321 is a different amino acid;
 - n) K at position 324 is a different amino acid;
 - o) Q at position 326 is a different amino acid;
 - p) A at position 327 is a different amino acid;
- q) any combination of one or more of a) through p), wherein the amino acid numbering corresponds to SEQ ID NO: 1.
- E7. An isolated polypeptide comprising an amino acid sequence identical to SEQ ID NO:1, except for one or more amino acid substitutions selected from the group 50 consisting of:
 - a) I at position 141 is substituted with a conservative amino acid substitution;
 - b) R at position 146 is substituted with a conservative amino acid substitution;
 - c) Q at position 149 is substituted with a conservative amino acid substitution;
 - d) N at position 150 is substituted with a conservative amino acid substitution;
 - e) T at position 152 is substituted with a conservative 60 amino acid substitution;
 - f) I at position 184 is substituted with a conservative amino acid substitution;
 - g) V at position 189 is substituted with a conservative amino acid substitution;
 - h) Q at position 194 is substituted with a conservative amino acid substitution d;

108

- i) D at position 197 is substituted with a conservative amino acid substitution;
- j) L at position 233 is substituted with a conservative amino acid substitution;
- k) R at position 234 is substituted with a conservative amino acid substitution:
- S at position 241 is substituted with a conservative amino acid substitution;
- m) I at position 321 is substituted with a conservative amino acid substitution;
- n) K at position 324 is substituted with a conservative amino acid substitution;
- Q at position 326 is substituted with a conservative amino acid substitution;
- p) A at position 327 is substituted with a conservative amino acid substitution;
- q) any combination of one or more of a) through p),
 wherein the amino acid numbering corresponds to SEQ
 ID NO: 1.
- E8. The isolated polypeptide of embodiment E7, wherein said conservative amino acid substitution is one or more substitutions selected from the group consisting of:
 - a) A is substituted with any one of G, I, L, S, T or V;
 - b) D is substituted with E;
 - c) I is substituted with any one of L, M or V;
 - d) K is substituted with any one of H or R;
 - e) L is substituted with any one of A, G, I, M or V;
 - f) N is substituted with any one of S, T or Q;
 - g) Q is substituted with any one of S, T or N;
 - h) R is substituted with any one of K or H;
 - i) S is substituted with any one of A, G, N, T or Q;
 - j) T is substituted with any one of A, G, N, Q or S; and
 - k) V is substituted with any one of A, G, I, L or M.
- E9. An isolated polypeptide comprising an amino acid sequence identical to SEQ ID NO:1, except for one or more amino acid substitutions selected from the group consisting of:

a) I at position 141 is A;

b) I at position 141 is N;

c) I at position 141 is T;

d) I at position 141 is Q;

e) I at position 141 is H;

f) R at position 146 is Q;

g) Q at position 149 is N; h) Q at position 149 is T;

i) N at position 150 is R;

j) N at position 150 is K;

k) T at position 152 is R;

T at position 152 is K;
 I at position 184 is A;

n) I at position 184 is N;

o) V at position 189 is D;

p) V at position 189 is M;

q) V at position 189 is N;

r) Q at position 194 is R; s) Q at position 194 is K;

t) D at position 197 is R;

u) D at position 197 is K;

v) L at position 233 is A;

w) R at position 234 is D;

x) R at position 234 is S;

y) R at position 234 is A;

z) S at position 241 is D;

ab) S at position 241 is É;

ac) S at position 241 is N; ad) S at position 241 is K;

ae) S at position 241 is P;

af) S at position 241 is T;

ag) I at position 321 is A;

25

50

55

60

109

-continued

ah) I at position 321 is N; ai) I at position 321 is T; ak) I at position 321 is Q; al) I at position 321 is H; am) K at position 324 is T; an) Q at position 326 is D; ao) A at position 327 is D; ap) any combination of one or more of a) through ao), 10

wherein the amino acid numbering corresponds to SEQ

E10. The polypeptide in any one of embodiments E1 to E9, comprising a number of amino acid substitutions 15 selected from the group consisting of:

- a) 1 amino acid substitution;
- b) 2 amino acid substitutions;
- c) 3 amino acid substitutions:
- d) 4 amino acid substitutions;
- e) 5 amino acid substitutions;
- f) 6 amino acid substitutions;
- g) 7 amino acid substitutions;
- h) 8 amino acid substitutions;
- i) 9 amino acid substitutions:
- i) 10 amino acid substitutions;
- k) 11 amino acid substitutions;
- 1) 12 amino acid substitutions;
- m) 13 amino acid substitutions;
- n) 14 amino acid substitutions:
- o) 15 amino acid substitutions; and
- p) 16 amino acid substitutions
- E11. The polypeptide of embodiment E9, comprising amino acid substitutions present at each of amino acid positions 141, 146, 149, 150, 152, 184, 189, 194, 197, 35 233, 234, 241, 321, 324, 326 and 327.
- E12. The polypeptide of any one of embodiments E1 to E11, wherein said polypeptide comprises the amino acid sequence in SEQ ID NO:1, except for amino acid substitutions indicated in embodiments E1 to E11.
- E13. The polypeptide in any one of embodiments E1 to E11, wherein said polypeptide is a variant or fragment of a Pseudomonas exotoxin A polypeptide.
- E14. The polypeptide of embodiment E13, wherein said variant or fragment comprises a number of epitopes 45 selected from the group consisting of:
 - a) at least one epitope:
 - b) at least two epitopes;
 - c) at least three epitopes;
 - d) at least four epitopes;
 - e) at least five epitopes; and
 - f) at least six epitopes.
- E15. The polypeptide of embodiment E14, wherein said polypeptide comprises a contiguous number of amino acids selected from the group consisting of:
 - a) at least 20 contiguous amino acids;
 - b) at least 30 contiguous amino acids;
 - c) at least 40 contiguous amino acids;
 - d) at least 50 contiguous amino acids;
 - e) at least 60 contiguous amino acids;
 - f) at least 70 contiguous amino acids.
 - g) at least 80 contiguous amino acids;
 - h) at least 90 contiguous amino acids;
 - i) at least 100 contiguous amino acids;
 - j) at least 125 contiguous amino acids; k) at least 150 contiguous amino acids;

 - 1) at least 175 contiguous amino acids.

- m) at least 200 contiguous amino acids;
- n) at least 225 contiguous amino acids;
- o) at least 250 contiguous amino acids;
- p) at least 275 contiguous amino acids;
- q) at least 300 contiguous amino acids;
- r) at least 325 contiguous amino acids; and
- s) at least 350 contiguous amino acids.
- E16. An isolated polypeptide comprising a Pseudomonas exotoxin A (PE-A) cytotoxic domain (Domain III), wherein the cytotoxic domain comprises one or more amino acid substitutions which prevent or reduce host immunogenic responses compared to the same polypeptide without said one or more amino acid substitutions.
- E17. The polypeptide of embodiment E16, wherein said one or more amino acid substitutions are introduced into a cytotoxic domain sequence selected from the group consisting of:
 - (a) amino acid residues Phe-134 to Lys-347 of SEQ ID NO: 1:
 - (b) amino acid residues Phe-134 to Lys-347 of SEQ ID
 - (c) amino acid residues Phe-400 to Lys-613 of SEQ ID NO: 133; and
 - (d) amino acid residues Phe-400 to Lys-613 of SEQ ID NO: 134.
- E18. The polypeptide of embodiment E17, wherein the last five amino acids in said cytotoxic domain are replaced with an amino acid sequence selected from the group consisting of:

- E19. The polypeptide in any one of embodiments E16 to E18, wherein said polypeptide further comprises one or more PE-A domains selected from the group consisting
 - (a) a cytosolic translocation domain (Domain II);
 - (b) a carboxy-terminal portion of Domain IB;
 - (c) an amino-terminal portion of Domain IB; and
 - (d) a complete Domain IB.
- wherein one or more of said domains has been modified with amino acid substitutions, as described herein, to reduce or eliminate immunogenicity.
- E20. The polypeptide of embodiment E19, wherein said cytosolic translocation domain (Domain II) comprises an amino acid sequence selected from the group con-
 - (a) amino acids Gly-3 to Ser-114 of SEQ ID NO:1; and (b) amino acids Gly-3 to Asn-114 of SEQ ID NO:4.
- E21. The polypeptide of embodiment E19, wherein said carboxy-terminal portion of Domain IB comprises the amino acid sequence of Gly-115 to Glu-133 of SEQ ID NO: 1 or wherein said amino-terminal portion of Domain IB comprises the amino acid sequence of Ala-365 to Ala-380 of SEQ ID NO:133.
- E22. The polypeptide of embodiment E19, wherein said complete Domain IB comprises the amino acid sequence of Ala-365 to Glu-399 of SEQ ID NO: 133.
- E23. The polypeptide in any one of embodiments E16 to E22, wherein said polypeptide is a variant or fragment of a Pseudomonas exotoxin A polypeptide.

55

60

65

111

- E24. The polypeptide of any one of embodiments E1 to E23, wherein said polypeptide has one or more biological activities selected from the group consisting of:
 - a) eukaryotic cell killing activity (cell cytotoxicity);
 - b) inhibits translation elongation factor EF-2 biological 5 activity;
 - c) induces or catalyzes ADP-ribosylation of EF-2; and
 - d) inhibits protein synthesis.
- E25. The polypeptide of any one of embodiments E1 to E24, wherein said one or more amino acid substitutions prevent or reduce host immunogenic responses compared to the same polypeptide without the corresponding said one or more amino acid substitutions.
- E26. The polypeptide of any one of embodiments E1 to E24, wherein said one or more amino acid substitutions prevent or reduce host immunogenic responses compared to a polypeptide comprising an amino acid sequence selected from the group consisting of:
 - (a) SEQ ID NO: 1;
 - (b) SEQ ID NO:4;
 - (c) SEQ ID NO: 133; and
 - (d) SEQ ID NO:134.
- E27. The polypeptide of any one of embodiments E1 to E26, wherein said polypeptide is a fusion protein.
- E28. The fusion protein of embodiment E27, wherein the amino-terminal end of said polypeptide in any one of embodiments E1 to E26 is fused to the carboxylterminal end of a different polypeptide.
- E29. The fusion protein of embodiment E27, wherein the carboxyl-terminal end of said polypeptide in any one of embodiments E1 to E26 is fused to the amino-terminal end of a different polypeptide.
- E30. The fusion protein in embodiment E28 or E29, wherein said different polypeptide comprises an antigen binding moiety.
- E31. The fusion protein of embodiment E30, wherein said antigen binding moiety is an antibody or fragment thereof.
- E32. The fusion protein of embodiment E31, wherein said antibody, or fragment thereof, is an antibody selected from the list in Table 1, or is a fragment thereof.
- E33. The fusion protein of embodiment E31, wherein said antibody, or fragment thereof, specifically binds to a cancer-specific or tumor-specific antigen.
- E34. The fusion protein of embodiment E33, wherein said cancer-specific or tumor-specific antigen is a breast cancer antigen.
- E35. The fusion protein of embodiment E34, wherein said breast cancer antigen is HER2.
- E36. The fusion protein of embodiment E31, wherein said antibody, or fragment thereof is selected from the group consisting of:

a)

ERTUMAXOMAB (Rexomun);

b)

PERTUZUMAB (Omnitarg);

and

c)

TRASTUZUMAB (Herceptin)

- E37. The fusion protein of any one of embodiments E27 to E29, wherein said different polypeptide comprises a polypeptide selected from the group consisting of:
 - a) Mesothelin;
 - b) CD24;
 - c) CD22;
 - d) CD25;
 - e) CD174;
 - f) TPBG;
 - g) CD56; and
 - h) C-type lectin-like molecule-1.
- E38. An isolated polynucleotide encoding the polypeptide or fusion protein in any one of embodiments E1 to E37.
- E39. An expression vector comprising the polynucleotide of embodiment E38.
- E40. A host cell comprising the expression vector of embodiment E39.
- E41. A method of producing the polypeptide or fusion protein in any one of embodiments E1 to E37, wherein said method comprises:
 - a) obtaining a host cell comprising a polynucleotide encoding said polypeptide or fusion protein;
 - b) exposing said host cell to conditions wherein said polypeptide or fusion protein is produced.
- E42. A method of producing the polypeptide or fusion protein in any one of embodiments E1 to E37, wherein said method comprises use of an expression system comprising:
 - (A) a first polynucleotide encoding a first hybrid polypeptide comprising:
 - (i) a first ligand binding domain; and
 - (ii) a DNA-binding domain;
 - (B) a second polynucleotide encoding a second hybrid polypeptide comprising:
 - (i) a second ligand binding domain; and
 - (ii) a transactivation domain;
 - (C) a third polynucleotide encoding the polypeptide or fusion protein in any one of embodiments E1 to E37, wherein said third polynucleotide is operably associated with a response element capable of being bound by the DNA-binding domain of said first hybrid polypeptide;
- wherein the first ligand binding domain and the second ligand binding domain are capable of ligand-induced dimerization.
- wherein expression of the polypeptide or fusion protein in any one of embodiments E1 to E37 is modulated by a ligand which induces dimerization of said first and said second ligand binding domains,
- wherein the polypeptide or fusion protein in any one of embodiments E1 to E37 is produced by allowing said ligand to contact said first and said second ligand binding domains.
- E43. A single expression vector or two or more expression vectors comprising the first, second, and third polynucleotides of embodiment E42.
- E44. The expression vector or expression vectors of embodiment E43, wherein one or more of the vectors is a viral expression vector.
- E45. A host cell comprising the expression vector or expression vectors of embodiments E43 or E44.
- E46. A method of treating a disease or disorder comprising administering to a subject in need thereof the polypeptide or fusion protein in any one of embodiments E1 to E37, the polynucleotide of embodiment E38, the vector of embodiment E39, the host cell of

55

113

embodiment E40, or a polypeptide or fusion protein produced by the method of embodiment E41.

- E47. A method of treating a disease or disorder comprising delivering to a subject in need thereof a polypeptide or fusion protein produced by the method of embodiment E42, wherein said method comprises administration of the ligand to said subject.
- E48. The method of embodiment E47, wherein the polypeptide or fusion protein is delivered to the subject by first administering the first, second, and third polynucleotides.
- E49. The method of embodiment E47, wherein the polypeptide or fusion protein is delivered to the subject by first administering the expression vector or expression vectors of embodiments E43 or E44.
- E50. The method of embodiment E47, wherein said polypeptide or fusion protein is delivered to the subject by first administering the host cell of embodiment E45.
- E51. A pharmaceutical composition comprising the polypeptide or fusion protein in any one of embodiments E1 to E37, comprising the polynucleotide of embodiment E38, comprising the expression vector or expression vectors in any one of embodiments E39, E43 or E44, or comprising the host cell of embodiments E40 or E45, 25 and a pharmaceutically acceptable carrier, diluent or excipient.
- E52. A medicament comprising the polypeptide or fusion protein in any one of embodiments E1 to E37, comprising the polynucleotide of embodiment E38, comprising the expression vector or expression vectors in any one of embodiments E39, E43 or E44, or comprising the host cell of embodiments E40 or E45.
- E53. Use of the medicament of embodiment E52, wherein said use is for the treatment of a disease or disorder.
- E54. Use of the medicament according to embodiment E53, wherein the disease or disorder is cancer.
- E55. A polypeptide having at least one *Pseudomonas* exotoxin A (PE-A) biological activity, wherein said polypeptide comprises one or more amino acid substitutions compared to a wild-type PE-A polypeptide, wherein said one or more amino acid substitutions is a substitution of a different amino acid at one or more positions corresponding to amino acid residues in the polypeptide of SEQ ID NO:1, wherein said substitution 45 positions are selected from the group consisting of:
 - a) isoleucine (I) at position 141;
 - b) arginine (R) at position 146;
 - c) glycine (G) at position 147;
 - d) glutamine (Q) at position 149;
 - e) asparagine (N) at position 150;
 - f) threonine (T) at position 152;
 - g) valine (V) at position 189;
 - h) arginine (R) at position 192;
 - i) glutamine (Q) at position 194;
 - j) aspartic acid (D) at position 197;
 - k) serine (S) at position 241;
 - 1) isoleucine (I) at position 321; and
 - m) glutamine (Q) at position 326.
- E56. The polypeptide of embodiment E55, wherein said 60 one or more amino acid substitutions is a conservative amino acid substitution.
- E57. The polypeptide of embodiment E55, wherein said one or more amino acid substitutions is selected from the group consisting of:
 - a) isoleucine (I) at position 141 is substituted with alanine (A), threonine (T), or histidine (H);

- b) arginine (R) at position 146 is substituted with glutamine (Q) or alanine (A);
- c) glycine (G) at position 147 is substituted with serine (S);
- d) glutamine (Q) at position 149 is substituted with threonine (T):
- e) asparagine (N) at position 150 is substituted with alanine (A);
- f) threonine (T) at position 152 is substituted with alanine (A) or arginine (R);
- g) valine (V) at 189 is substituted with alanine (A);
- h) arginine (R) at position 192 is substituted with alanine (A) or glutamine (Q);
- i) glutamine (Q) at position 194 is substituted with arginine (R);
- j) aspartic acid (D) at position 197 is substituted with lysine (K);
- k) serine (S) at position 241 is substituted with threonine (T), asparagine (N), lysine (K), or proline (P);
- 1) isoleucine (I) at position 321 is substituted with alanine (A), asparagine (N), histidine (H), threonine (T), or glutamine (Q); and
- m) glutamine (Q) at position 326 is substituted with glutamic acid (E).
- E58. The polypeptide of embodiment E55, wherein said polypeptide comprises a substitution for isoleucine (I) at position 141, a substitution for threonine (T) at position 152, a substitution for arginine (R) at position 192, a substitution for aspartic acid (D) at position 197, a substitution for serine (S) at position 241, and a substitution for glutamine (Q) at position 326.
- E59. The polypeptide of embodiment E55, wherein said polypeptide comprises a substitution of threonine (T) or alanine (A) for isoleucine (I) at position 141, a substitution alanine (A) or arginine (R) for threonine (T) at position 152, a substitution of alanine (A) for arginine (R) at position 192, a substitution of lysine (K) for aspartic acid (D) at position 197, a substitution of threonine (T) for serine (S) at position 241, and a substitution of glutamic acid (E) for glutamine (Q) at position 326.
- E60. The polypeptide of embodiment E55, wherein said polypeptide comprises a substitution of threonine (T) for isoleucine (I) at position 141, a substitution alanine (A) for threonine (T) at position 152, a substitution of alanine (A) for arginine (R) at position 192, a substitution of lysine (K) for aspartic acid (D) at position 197, a substitution of threonine (T) for serine (S) at position 241, and a substitution of glutamic acid (E) for glutamine (Q) at position 326.
- E61. The polypeptide of embodiment E55, wherein said polypeptide comprises a substitution of alanine (A) for isoleucine (I) at position 141, a substitution alanine (A) for threonine (T) at position 152, a substitution of alanine (A) for arginine (R) at position 192, a substitution of lysine (K) for aspartic acid (D) at position 197, a substitution of threonine (T) for serine (S) at position 241, and a substitution of glutamic acid (E) for glutamine (Q) at position 326.
- E62. The polypeptide of embodiment E55, wherein said polypeptide comprises a substitution for isoleucine (I) at position 141, a substitution for threonine (T) at position 152, a substitution for aspartic acid (D) at position 197, a substitution for serine (S) at position 241, and a substitution for glutamine (Q) at position 326.

E63. The polypeptide of embodiment E55, wherein said polypeptide comprises a substitution for isoleucine (I) at position 141, a substitution for threonine (T) at position 152, a substitution for arginine (R) at position 192, a substitution for aspartic acid (D) at position 197, 5 and a substitution for serine (S) at position 241.

E64. The isolated polypeptide of embodiment E55, wherein said polypeptide comprises a substitution of alanine (A) or threonine (T) for isoleucine (I) at position 141, a substitution of arginine (R) or alanine (A) 10 for threonine (T) at position 152, a substitution of lysine (K) for aspartic acid (D) at position 197, a substitution of threonine (T) for serine (S) at position 241, and a substitution of glutamic acid (E) for glutamine (Q) at position 326.

E65. The isolated polypeptide of embodiment E55, wherein said polypeptide comprises a substitution of alanine (A) for isoleucine (I) at position 141, a substitution of arginine (R) for threonine (T) at position 152, a substitution of lysine (K) for aspartic acid (D) at 20 position 197, a substitution of threonine (T) for serine (S) at position 241, and a substitution of glutamic acid (E) for glutamine (Q) at position 326.

E66. The polypeptide of embodiment E55, wherein said polypeptide comprises a substitution of alanine (A) for 25 isoleucine (I) at position 141, a substitution of alanine (A) for threonine (T) at position 152, a substitution of lysine (K) for aspartic acid (D) at position 197, a substitution of threonine (T) for serine (S) at position 241, and a substitution of glutamic acid (E) for glutamine (Q) at position 326.

E67. The polypeptide of embodiment E55, wherein said polypeptide comprises a substitution of threonine (T) for isoleucine (I) at position 141, a substitution of alanine (A) for threonine (T) at position 152, a substitution of lysine (K) for aspartic acid (D) at position 197, a substitution of threonine (T) for serine (S) at position 241, and a substitution of glutamic acid (E) for glutamine (Q) at position 326.

E68. The polypeptide in any one of embodiments E55 to 40 E67, wherein the at least one *Pseudomonas* exotoxin A (PE-A) biological activity comprises the ability to inhibit in vitro transcription/translation compared to a corresponding wild-type or non-substituted PE-A polypeptide, wherein said ability to inhibit in vitro transcription/translation is in an amount selected from the group consisting of:

(a) at least 5% inhibition;

(b) at least 10% inhibition;

(c) at least 15% inhibition;

(d) at least 20% inhibition;

(e) at least 25% inhibition;

(f) at least 30% inhibition;

(g) at least 40% inhibition;

(h) at least 50% inhibition;

(i) at least 60% inhibition;

(j) at least 70% inhibition;

(k) at least 80% inhibition;

(1) at least 90% inhibition;

(m) at least 100% inhibition;

(n) about 100% inhibition; and

(o) 100% inhibition.

E69. The polypeptide in any one of embodiments E55 to E68, comprising a number of amino acid substitutions selected from the group consisting of:

a) 1 amino acid substitution;

b) 2 amino acid substitutions;

116

- c) 3 amino acid substitutions;
- d) 4 amino acid substitutions;
- e) 5 amino acid substitutions; and
- f) 6 amino acid substitutions.

E70. The polypeptide in any one of embodiments E55 to E69, wherein said polypeptide comprises one or more amino acid substitutions which prevent or reduce host immunogenic responses compared to the same polypeptide without said one or more amino acid substitutions.

E71. The polypeptide of embodiment E70, wherein host immunogenic responses are prevented or reduced in a human host.

E72. The polypeptide in any one of embodiments E55 to E71, wherein the last five or six amino acids in said polypeptide comprise one or more amino acid sequences selected from the group consisting of:

Arg-Glu-Asp-Leu-Lys;

(ii)

Arg-Glu-Asp-Leu:

(iii)

Lys-Asp-Glu-Leu;

(iv)

Glu-Asp-Leu-Lys;

and

50

55

60

(v) a dimer, trimer, pentamer, hexamer, septamer, or octamer of (i), (ii), or (iii), or any combination thereof

E73. The polypeptide of any one of embodiments E55 to E72, wherein said polypeptide has one or more biological activities selected from the group consisting of: a) eukaryotic cell killing activity (cell cytotoxicity);

- b) inhibits translation elongation factor EF-2 biological activity:
- c) induces or catalyzes ADP-ribosylation of EF-2; and d) inhibits protein synthesis.

E74. The polypeptide of any one of embodiments E55 to E72, wherein said one or more amino acid substitutions prevent or reduce host immunogenic responses compared to the same polypeptide without the corresponding said one or more amino acid substitutions.

E75. A polypeptide comprising a biologically active fragment of the polypeptide in any one of embodiments E55 to E74.

E76. A polypeptide comprising a variant or derivative of the polypeptide in any one of embodiments E55 to E75, wherein said variant or derivative shares amino acid sequence identity with the polypeptide in any one of embodiments E55 to E75, wherein said shared amino acid sequence identity is selected from the group consisting of:

a) at least 80% identity;

- b) at least 85% identity;
- c) at least 90% identity;
- d) at least 95% identity;
- e) at least 97% identity;

25

45

50

65

117

- f) at least 98% identity; and
- g) at least 99% identity.
- E77. The polypeptide of any one of embodiments E55 to E76, wherein said one or more amino acid substitutions prevent or reduce host immunogenic responses compared to a polypeptide comprising an amino acid sequence selected from the group consisting of:
 - (a) SEQ ID NO:1;
 - (b) SEQ ID NO:4;
 - (c) SEQ ID NO: 133; and
 - (d) SEQ ID NO:134.
- E78. The polypeptide of any one of embodiments E55 to E77, wherein said polypeptide is a fusion protein.
- E79. The fusion protein of embodiment E78, wherein the amino-terminal end of said polypeptide in any one of embodiments E55 to E78 is fused to the carboxylterminal end of a different polypeptide.
- E80. The fusion protein of embodiment E78, wherein the carboxyl-terminal end of said polypeptide in any one of 20 embodiments E55 to E78 is fused to the amino-terminal end of a different polypeptide.
- E81. The fusion protein in embodiment E79 or E80, wherein said different polypeptide comprises an antigen binding moiety.
- E82. The fusion protein of embodiment E81, wherein said antigen binding moiety is an antibody or fragment thereof.
- E83. The fusion protein of any one of embodiments E78 to E82, wherein said antibody, or fragment thereof, is an antibody selected from the list in Table 1, or is a fragment thereof.
- E84. The fusion protein of embodiment E82, wherein said antibody, or fragment thereof, specifically binds to a cancer-specific or tumor-specific antigen.
- E85. The fusion protein of embodiment E84, wherein said cancer-specific or tumor-specific antigen is a breast cancer antigen.
- E86. The fusion protein of embodiment E85, wherein said breast cancer antigen is HER2.
- E87. The fusion protein of embodiment E82, wherein said antibody, or fragment thereof is selected from the group consisting of:

ERTUMAXOMAB (Rexomun);

b)

a)

PERTUZUMAB (Omnitarg);

and

c)

TRASTUZUMAB (Herceptin)

- E88. The fusion protein of any one of embodiments E78 to E80, wherein said different polypeptide comprises a follower polypeptide selected from the group consisting of:
 - a) Mesothelin;
 - b) CD24;
 - c) CD22;
 - d) CD25;
 - e) CD174;

118

- f) TPBG:
- g) CD56; and
- h) C-type lectin-like molecule-1.
- E89. A polynucleotide encoding the polypeptide or fusion protein in any one of embodiments E55 to E88.
- E90. An expression vector comprising the polynucleotide of embodiment E89.
- E91. A host cell comprising the expression vector of embodiment E90.
- E92. A method of producing the polypeptide or fusion protein in any one of embodiments E55 to E88, wherein said method comprises:
 - a) obtaining a host cell comprising a polynucleotide encoding said polypeptide or fusion protein;
 - exposing said host cell to conditions wherein said polypeptide or fusion protein is produced.
- E93. A method of producing the polypeptide or fusion protein in any one of embodiments E55 to E88, wherein said method comprises use of an expression system comprising:
 - (A) a first polynucleotide encoding a first hybrid polypeptide comprising:
 - (i) a first ligand binding domain; and
 - (ii) a DNA-binding domain;
 - (B) a second polynucleotide encoding a second hybrid polypeptide comprising:
 - (i) a second ligand binding domain; and
 - (ii) a transactivation domain;
 - (C) a third polynucleotide encoding the polypeptide or fusion protein in any one of embodiments E55 to E88, wherein said third polynucleotide is operably associated with a response element capable of being bound by the DNA-binding domain of said first hybrid polypeptide;
- wherein the first ligand binding domain and the second ligand binding domain are capable of ligand-induced dimerization,
- wherein expression of the polypeptide or fusion protein in any one of embodiments E55 to E88 is modulated by a ligand which induces dimerization of said first and said second ligand binding domains,
- wherein the polypeptide or fusion protein in any one of embodiments E55 to E88 is produced by allowing said ligand to contact said first and said second ligand binding domains.
- E94. A single expression vector or two or more expression vectors comprising the first, second, and third polynucleotides of embodiment E93.
- E95. The expression vector or expression vectors of embodiment E94, wherein one or more of the vectors is a viral expression vector.
- E96. A host cell comprising the expression vector or expression vectors of embodiments E94 or E95.
- E97. A method of treating a disease or disorder comprising administering to a subject in need thereof the polypeptide or fusion protein in any one of embodiments E55 to E88, the polynucleotide of embodiment E89, the expression vector or expression vectors in any one of embodiments E90, E94 or E95, the host cell of embodiments E91 or E96, or a polypeptide or fusion protein produced by the method of embodiment E92.
- E98. A method of treating a disease or disorder comprising delivering to a subject in need thereof a polypeptide or fusion protein produced by the method of embodiment E93, wherein said method comprises administration of the ligand to said subject.

- E99. The method of embodiment E44, wherein the polypeptide or fusion protein is delivered to the subject by first administering the first, second, and third polynucleotides.
- E100. The method of embodiment E98, wherein the ⁵ polypeptide or fusion protein is delivered to the subject by first administering the expression vector or expression vectors of embodiments E94 or E95.
- E101. The method of embodiment E98, wherein said polypeptide or fusion protein is delivered to the subject by first administering the host cell of embodiments E91 or E96.
- E102. A pharmaceutical composition comprising the polypeptide or fusion protein in any one of embodiments E55 to E88, comprising the polynucleotide of embodiment E89, comprising the expression vector or expression vectors in any one of embodiments E90, E94 or E95, or comprising the host cell of embodiments E91 or E96, and a pharmaceutically acceptable carrier, diluent or excipient.
- E103. A medicament comprising the polypeptide or fusion protein in any one of embodiments E55 to E88, comprising the polynucleotide of embodiment E89, comprising the expression vector or expression vectors 25 in any one of embodiments E90, E94 or E95, or comprising the host cell of embodiments E91 or E96.
- E104. Use of the pharmaceutical composition of embodiment E102 or the medicament of embodiment E103, wherein said use is for the treatment of a disease or disorder.
- E105. Use of the pharmaceutical composition or the medicament according to embodiment E104, wherein the disease or disorder is cancer.
- E106. An *Pseudomonas* exotoxin A (PE-A) polypeptide, wherein said polypeptide comprises a mutation at a position corresponding to amino acid position E184 in SEQ ID NO:1 (or position E196 in SEQ ID NO:2) wherein an isoleucine at position E184 (or position 196 40 in SEQ ID NO:2) is substituted with a different amino acid.
- E107. The polypeptide of embodiment E106, wherein said polypeptide does not have PE-A biological activity.
- E108. A method for assaying the immunogenicity of a mutated form of *Pseudomonas* exotoxin A (PE-A), wherein said method comprises:
 - (a) contacting immune cells with a mutated form of $_{50}$ PE-A; and
 - (b) assaying immune cell stimulation,
- wherein said mutated form of PE-A comprises a mutation at a position corresponding to amino acid position E184 in SEQ ID NO:1 (or position 196 in SEQ ID NO:2) wherein an isoleucine at position E184 (or position 196 in SEQ ID NO:2) is substituted with a different amino acid, and wherein said mutated form of PE-A also comprises one or more additional amino acid substitutions compared to a wild-type form of PE-A.
- E109. The method of embodiment E108, wherein said immune cells are human immune cells.
- E110. The method of embodiment E109, wherein said immune cells are human T-cells, cells of a human T-cell 6 lineage, human B-cells, or cells of a human B-cell lineage.

120

- E111. The method of embodiment E47, wherein the ligand is a compound having Formula I, or a pharmaceutically acceptable salt thereof.
- E112. The method of embodiment E47, wherein the ligand is a compound having Formula II, or a pharmaceutically acceptable salt thereof.
- E113. The method of embodiment E47, wherein the ligand is a compound having Formula III, or a pharmaceutically acceptable salt thereof.
- E114. The method of embodiment E47, wherein the ligand is a compound of Table 3, or a pharmaceutically acceptable salt thereof.
- E115. The method of embodiment E47, wherein the ligand is a compound having Formula III, wherein: A is:

$$\mathbb{R}^{3a}$$
 \mathbb{R}^{3b}
 \mathbb{R}^{3c}

B is:

$$R^{3f}$$
 R^{3g}
 R^{3h}

- R^{3a}, R^{3b}, R^{3c}, R^{3d}, R^{3e}, R^{3f}, R^{3g}, R^{3h}, R³ⁱ and R^{3j} are independently selected from hydrogen, halo, (C₁-C₄) alkyl, or (C₁-C₄)alkoxy;
- R^1 is (C_1-C_6) alkyl, hydroxy (C_1-C_4) alkyl, or (C_2-C_4) alkenyl; and
- R² is optionally substituted (C₁-C₆)alkyl, or a pharmaceutically acceptable salt thereof.
- E116. The method of embodiment E47, wherein the ligand is a compound selected from the group consisting of:
 - (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(2-ethyl-3-methoxy-benzoyl)-hydrazide;
 - (R)-3,5-Dimethyl-benzoic acid N'-benzoyl-N-(1-tert-butyl)-hydrazide;
 - (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(2-methyl-benzoyl)-hydrazide;
 - (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(2-methoxy-benzoyl)-hydrazide;
 - (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(2-fluoro-benzoyl)-hydrazide;
 - (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(2-chloro-benzoyl)-hydrazide;
 - (R)-3,5-Dimethyl-benzoic acid N'-(2-bromo-benzoyl)-N-(1-tert-butyl-butyl)-hydrazide;
 - (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(3-methyl-benzoyl)-hydrazide;

- (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(3-methoxy-benzoyl)-hydrazide;
- (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(3-chloro-benzoyl)-hydrazide;
- (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)- 5 N'-(4-methyl-benzoyl)-hydrazide;
- (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(4-ethyl-benzoyl)-hydrazide;
- (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(4-methoxy-benzoyl)-hydrazide;
- (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(4-chloro-benzoyl)-hydrazide;
- (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(2,6-difluoro-benzoyl)-hydrazide;
- (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)- 15 N'-(2,6-dichloro-benzoyl)-hydrazide;
- (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(3,4-dimethoxy-benzoyl)-hydrazide;
- (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(3,5-difluoro-benzoyl)-hydrazide;
- (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(3,5-dimethoxy-4-methyl-benzoyl)-hydrazide;
- (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(4-methyl-benzo[1,3]dioxole-5-carbonyl)-hydrazide:
- (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl)-hydrazide;
- (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(5-ethyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl)-hydrazide;
- (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(naphthalene-1-carbonyl)-hydrazide;
- (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(naphthalene-2-carbonyl)-hydrazide;
- (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(thiophene-2-carbonyl)-hydrazide;
- (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(2,5-dimethyl-furan-3-carbonyl)-hydrazide;
- (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)- 40 N'-(2-chloro-pyridine-3-carbonyl)-hydrazide;
- (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(6-chloro-pyridine-3-carbonyl)-hydrazide;
- (R)-3,5-Dimethyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide;
- (R)-3,5-Dimethoxy-4-methyl-benzoic acid N-(1-tert-butyl-butyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide; and
- (R)-3,5-Dimethyl-benzoic acid N'-(4-ethyl-benzoyl)-N-(1-phenethyl-but-3-enyl)-hydrazide,
- or a pharmaceutically acceptable salt thereof.

EXAMPLES

Example 1

T Cell Epitope Mapping of PE

Peptides spanning the sequence of an approximately 38 kD form of *Pseudomonas* exotoxin A protein ("PE38") were analyzed for the presence of immunogenic CD4+ T cell epitopes using EPISCREENTM T cell epitope mapping analysis (Antitope Ltd, Cambridge, UK).

122

EPISCREENTM is a proprietary technology commercially available through Antitope Ltd, Cambridge, UK, to map T cell epitopes within a protein sequence to determine potential for immunogenicity (based on the number and potency of T cell epitopes within a sequence). EPISCREENTM T cell epitope mapping typically uses CD8+ T cell depleted PBMCs from a minimum of 50 HLA-typed donors (selected to represent the human population of interest). Typically, 10 15mer peptides with 12 amino acid overlaps spanning a protein sequence are analyzed in a large number of replicate cultures for in vitro CD4+ T cell stimulation by 3H TdR incorporation. CD4+ T cell stimulation is often detected in two or three adjacent and overlapping peptides since the core 9mer that binds the MHC class II binding groove will be present in more than one peptide sequence. Following identification of peptides that stimulate CD4+ T cells in vitro, in silico technology can be used to design epitope-20 depleted (deimmunized) variants by determining the precise location of core 9mer sequences and the location of key MHC class II anchor residues.

A total of 120 overlapping 15mer peptides spanning the entire PE38 sequence (SEQ ID NO:2), including 4 peptides covering a null mutation and 4 peptides spanning an N-terminal linker sequence (SEQ ID NO:3) were tested against a cohort of 52 healthy donors. CD4+ T cell responses against individual peptides were measured using proliferation assays (3H-thymidine incorporation). The proliferation assay data was used to compile a T cell epitope map of the PE38 sequence and six T cell epitopes were identified.

EPISCREENTM Donor Selection

Peripheral blood mononuclear cells (PBMC) were iso-35 lated from healthy community donor buffy coats (from blood drawn within 24 hours) obtained from the UK National Blood Transfusion Service (Addenbrooke's Hospital, Cambridge, UK) and according to approval granted by Addenbrooke's Hospital Local Research Ethics Committee. PBMC were isolated from buffy coats by LYMPHOPREPTM (Axis-Shield UK, Dundee, Scotland) density centrifugation. (LYMPHOPREP™ is a ready-made, sterile and endotoxin tested solution for the isolation of human mononuclear cells from blood. See, Axis-Shield, package insert for LYM-PHOPREP™ density gradient media No. 619. March 03. Div.—1114740.) CD8+ T cells were depleted using CD8+ ROSETTESEPTM (STEMCELLTM Technologies Inc, Manchester, UK) to remove CD8+ cells from the isolated mononuclear cells. See e.g., StemCell Technologies Inc., ROSET-TESEPTM procedure for Human CD8+ T Cell Enrichment Cocktail (Catalog #15023/15063; Procedure version 1.3.0, "#28572 (May 2011)).

HLA allotypes of donors were characterized using the Biotest HLA SSP-PCR tissue-typing kit (Biotest, Solihull, UK, catalogue number 826215). T cell responses to a reproducibility control neo-antigen were also determined using Imject maricutlure keyhole limpet haemocyanin (KLH) (Pierce (Perbio Science UK, Ltd)), Cramlington, UK, catalogue number 77600) with the KLH diluted to a final concentration of 100 g/ml. PBMC were then frozen and stored in liquid nitrogen until required.

A cohort of 52 donors was selected to best represent the number and frequency of HLA-DR allotypes expressed in the world population. Analysis of the allotypes expressed in the cohort against those expressed in the world population

60

123

revealed that coverage of >80% was achieved and that all major HLA-DR alleles (individual allotypes with a frequency >5% expressed in the world population) were well represented. Details of individual donor haplotypes and a comparison of the frequency of MHC class II haplotypes 5 expressed in the world population and the sample population are shown in Table 7 and FIG. 2, respectively.

Table 7. Donor details and haplotypes. Donor responses (SI) to KLH are shown for two independent proliferation assays. Test 1 was performed using KLH on freshly isolated 10 PBMC and IEX01 is the KLH re-test performed in the current study on PBMC recovered from liquid nitrogen storage as indicated above. Responses that did not produce the same result (i.e. positive including borderline SI>1.90 p<0.05 or negative) in both tests are highlighted in grey (i.e., 15 donors 3, 7, 9, 33 and 44).

TABLE 7

Donor	Haplotypes	and	Responses	
-------	------------	-----	-----------	--

		KLH	
Donor	Haplotype	Test 1	IEX01
1	DRB1*15, DRB1*16; DRB5*	18.10	1.97
2	DRB1*03, DRB1*07; DRB3*; DRB4*	2.49	5.74
3	DRB1*11, DRB1*13; DRB3*; DRB4*	0.81	4.00
4	DRB1*03; DRB3*	1.73	1.78
5	DRB1*01, DRB1*13; DRB3*; DRB4*	0.99	1.05
6	DRB1*03, DRB1*14; DRB3*	2.91	2.01
7	DRB1*13, DRB1*14; DRB3*; DRB4*	3.13	1.20
8	DRB1*01, DRB1*07; DRB4*	2.49	5.74
9	DRB1*03, DRB1*07; DRB3*; DRB4*	0.81	4.00
10	DRB1*03, DRB1*15; DRB5	6.16	6.16
11	DRB1*01, DRB1*13; DRB3*	7.15	17.34
12	DRB1*13, DRB4*; DRB5*	7.98	2.76
13	DRB1*13, DRB1*14; DRB4*	1.00	1.81
14	DRB1*03, DRB1*13; DRB3*	2.28	2.70
15	DRB1*04, DRB1*11; DRB3*; DRB4*	8.96	1.91
16	DRB1*04, DRB1*14; DRB3*; DRB4*	5.85	4.01
17	DRB1*13, DRB1*15; DRB3*; DRB5*	19.16	2.69
18	DRB1*11, DRB1*13; DRB3*	10.32	6.48
19	DRB1*04, DRB1*15; DRB4*	2.70	3.39
20	DRB1*04, DRB1*07; DRB4*	0.51	1.27
21	DRB1*01, DRB1*04; DRB4*	1.71	1.05
22	DRB1*03; DRB3*	1.05	1.59
23	DRB1*04, DRB1*15; DRB4*; DRB5*	2.83	2.34
24	DRB1*01	1.63	1.09
25	DRB1*04, DRB1*15; DRB4*; DRB5*	1.12	1.44
26	DRB1*03, DRB1*07; DRB3*; DRB4*	1.18	0.84
27	DRB1*11, DRB1*13; DRB3*	8.80	14.30
28	DRB1*01, DRB1*07; DRB4*	3.68	4.53
29	DRB1*12, DRB1*13; DRB3*	3.68	2.40
30	DRB1*11; DRB3*	7.68	2.71
31	DRB1*03, DRB1*11; DRB3*	3.04	4.16
32	DRB1*13; DRB3*	1.96	2.22
33	DRB1*15; DRB4*	1.31	3.13
34	DRB1*03, DRB1*04; DRB3*; DRB4*	0.97	1.35
35	DRB1*12; DRB3*; DRB4*	3.51	2.55
36	DRB1*07; DRB3*; DRB4*	6.63	8.90
37	DRB1*04, DRB1*04; DRB4*	44.94	6.28
38	DRB1*01, DRB1*15; DRB3*; DRB4*	1.36	1.30
39	DRB1*07, DRB1*13; DRB3*; DRB4*	12.62	2.29

124

TABLE 7-continued

Donor Haplotypes and Responses					
40	DRB1*03, DRB1*04; DRB3*; DRB4*	1.39	1.37		
41	DRB1*07, DRB1*08; DRB4*	3.40	3.47		
42	DRB1*07, DRB1*13; DRB3*; DRB4*	40.32	7.36		
43	DRB1*13, DRB1*15; DRB3*; DRB5*	3.56	3.21		
44	DRB1*11, DRB1*14; DRB3*	1.15	2.86		
45	DRB1*03, DRB1*13; DRB3*	8.78	8.72		
46	DRB1*03, DRB1*13; DRB3*	11.47	3.11		
47	DRB1*03, DRB1*04; DRB3*; DRB4*	6.27	2.03		
48	DRB1*04, DRB1*15; DRB5*	10.29	3.77		
49	DRB1*07, DRB1*15; DRB4*; DRB5*	2.59	2.32		
50	DRB1*04, DRB1*15; DRB4*; DRB5*	2.49	2.42		
51	DRB1*11; DRB3*; DRB4*	8.30	2.09		
52	DRB1*03, DRB1*13; DRB3*	3.99	6.22		
	41 42 43 44 45 46 47 48 49 50	40 DRB1*03, DRB1*04; DRB3*; DRB4* 41 DRB1*07, DRB1*08; DRB4* 42 DRB1*07, DRB1*13; DRB3*; DRB4* 43 DRB1*13, DRB1*15; DRB3*; DRB5* 44 DRB1*13, DRB1*14; DRB3* 45 DRB1*03, DRB1*13; DRB3* 46 DRB1*03, DRB1*13; DRB3* 47 DRB1*03, DRB1*04; DRB3*; DRB4* 48 DRB1*04, DRB1*15; DRB5* 49 DRB1*07, DRB1*15; DRB4*; DRB5* 50 DRB1*04, DRB1*15; DRB4*; DRB5* 51 DRB1*11; DRB3*; DRB4*	40 DRB1*03, DRB1*04; DRB3*; DRB4* 1.39 41 DRB1*07, DRB1*08; DRB4* 3.40 42 DRB1*07, DRB1*13; DRB3*; DRB4* 40.32 43 DRB1*13, DRB1*15; DRB3*; DRB5* 3.56 44 DRB1*31, DRB1*14; DRB3* 1.15 45 DRB1*03, DRB1*13; DRB3* 8.78 46 DRB1*03, DRB1*13; DRB3* 11.47 47 DRB1*03, DRB1*13; DRB3* 10.29 48 DRB1*04, DRB1*15; DRB5* 10.29 49 DRB1*07, DRB1*15; DRB4*; DRB5* 2.59 50 DRB1*04, DRB1*15; DRB4*; DRB5* 2.49 51 DRB1*11; DRB3*; DRB4* 8.30		

EPISCREEN® Analysis: Proliferation Assay

PBMC from each donor were thawed, counted and viability was assessed. Cells were revived in room temperature AIM V® culture medium (Invitrogen, Paisley, UK) before adjusting the cell density to 2-3×10⁶ PBMC/ml (proliferation cell stock). Peptides were synthesized on a 1-3 mg scale with free N-terminal amine and C-terminal carboxylic acid. Peptides were dissolved in DMSO to a concentration of 10 mM and peptide culture stocks prepared by diluting into AIM V® culture medium to a final concentration of 5 μM in the well. For each peptide and each donor, sextuplicate cultures were established in a flat bottomed 96 well plate. Both positive and negative control cultures were also tested in sextuplicate. For each donor, three control antigen/peptides (KLH protein and peptides derived from Influenza A and Epstein Barr viruses) were also included.

Cultures were incubated for a total of 6 days before adding 0.75 µCi 3[H]-thymidine (PERKIN ELMER®, Beaconsfield, UK) to each well. Cultures were incubated for a further 18 hours before harvesting onto filter mats using a TOMTEC MACH® III cell harvester (TOMTEC®, Hamden, Conn., USA). Counts per minute (cpm) for each well were determined by MeltilexTM (PERKIN ELMER®) scintillation counting on a Microplate Beta Counter (PERKIN ELMER®) in paralux, low background counting mode.

EPISCREENTM Data Analysis

For proliferation assays, an empirical threshold of a stimulation index (SI) equal to or greater than 2 (SI≥2.00)

50 has been previously established whereby samples inducing proliferative responses above this threshold are deemed positive (where included, borderline SI≥1.90 are highlighted). Extensive assay development and previous studies have shown that this is the minimum signal to noise threshold allowing maximum sensitivity without detecting large numbers of false positive responses. Positive responses are defined by the following statistical and empirical thresholds:

- Significance (p<0.05) of the response by comparing cpm of test wells against medium control wells using unpaired two sample Student's t-test.
- 2. Stimulation index greater than 2.00 (SI≥2.00), where SI=mean cpm of test wells/mean cpm medium control wells. Data presented in this way is indicated as SI≥2.00, p<0.05.
- In addition, intra-assay variation was assessed by calculating the coefficient of variance and standard deviation (SD) of the raw data from replicate cultures.

Proliferation assays were set up in sextuplicate cultures ("non-adjusted data"). To ensure that intra-assay variability was low, the data was also analyzed after removing the maximum and minimum cpm values ("adjusted data") and the SI of donor responses was compared using both data 5 sets.

T cell epitopes were identified by calculating the average frequency of positive responses (defined above) to all peptides in the study plus standard deviation (SD) to give a background response threshold. Any peptide that induced a 10 frequency of positive proliferation responses above this threshold in both the adjusted and non-adjusted data was considered to contain an immunogenic T cell epitope (and, thus, potentially represents an immunogenicity inducing epitope which could give rise to immunogenic responses in 15 vivo).

In Silico Analysis of Peptides

The sequences of peptides that were positive in the proliferation assay were analyzed using Antitope's predictive iTOPETM software (Perry et al. 2008). This software 20 predicts favorable interactions between amino acid side chains of the peptide and specific binding pockets within the MHC class II binding groove. Analysis of the peptide sequences using iTOPETM was performed with overlapping 9mers spanning the peptides which were tested against each 25 of the 34 MHC class II alleles. Each 9mer was scored based on the potential 'fit' and interactions with the MHC class II molecules. 9mers that produced a high mean binding score were identified and, from the T cell proliferation data, 9mers which were considered as critical to T cell responses ("core 30 9mers") were highlighted. iTOPETM analysis was then repeated with a range of amino acid changes in the core 9mers in order to determine preferred amino acid substitutions for use in deimmunization.

Results and Discussion

A total of 120 peptides were synthesized spanning the entire PE38 sequence. The peptides were designed as 15mers to span the sequence in overlapping increments of 12 amino acids. These peptides were then tested for the presence of CD4+ T cell epitopes by EPISCREEN™ T cell 40 epitope mapping analysis. Positive T cell responses were defined by donors that produced a significant (p<0.05) response with a SI≥2.00 to any given peptide (SI≥2.00, p<0.05). T cell epitopes were identified by calculating the average frequency of the positive responses to all peptides in 45 the study plus SD (termed 'background response threshold'). This was calculated to be 10.8% in the raw 'non-

adjusted' data and 10.7% in the adjusted data (where maximum and minimum values were removed and the mean cpm calculated on the remaining four wells). Thus, peptides containing a T cell epitope induced positive T cell proliferation responses (SI≥2.00, p<0.05) in ≥6 donors in the non-adjusted and adjusted data sets. Inter-assay variability was assessed using KLH as a reproducibility control where the frequency of positive T cell responses against KLH were compared in two separate EPISCREENTM assays (Table 7). The results show that inter-assay variability is within the acceptable range and consistent with previous studies (≤10%). The frequency of T cell responses against the two control peptides C3 (EBNA derived epitope) and C32 (Influenza derived epitope) ranged between 23-31% (non-adjusted) and between 21-29% (adjusted) for the two peptides, respectively (FIG. 3). This is within the typical range observed for these two peptides in T cell epitope mapping studies.

The output from non-adjusted and adjusted data analysis was examined to ensure that intra-assay variability was low and that positive responses were not the result of spurious proliferation in individual wells. The results from each analysis showed, in most cases, only small differences between the methods and donor responses for both nonadjusted and adjusted analysis. Table 10 provides a summary of individual donor responses to each of the peptides. The proliferation assay data showing the frequency of positive donor responses to each peptide is shown in FIG. 3. For all peptides that induced a high frequency of positive (SI≥2.00, p<0.05, including borderline responses) T cell proliferation responses above the background response threshold, additional in silico analysis was performed to aid in the identification of the precise location of MHC class II core 9mer binding registers (using iTOPETM), and to identify peptides 35 that are homologous to sequences containing T cell epitopes that have been tested in previous EPISCREENTM T cell epitope mapping assays (using TCEDTM).

Table 8. Summary of individual donor responses to PE38 peptides. Positive responses (SI≥2.00, p<0.05, including borderline responses) are indicated by the donor number and individual SI are shown in parentheses next to the corresponding donor. The background response rate was 10.8% in the non-adjusted data and 10.7% in the adjusted data peptides inducing positive T cell proliferation above this frequency (positive response in ≥6 donors) contained T cell epitopes (indicated with bold text; i.e., peptides 50, 52, 53, 65, 67, 68, 81, 82 and 110 (also as indicated in FIGS. 3-6)).

TABLE 8

	Donor Respons	es to PE38 Peptides	
Peptid #	le Proliferation Non-Adjusted	Proliferation Adjusted	Peptide Sequence
1	11(2.25), 19(2.42), 25(3.24), 35(2.77), 36(2.21)	11(2.34), 19(2.72), 25(3.33), 35(2.76), 36(2.10)	GGGGGSGGGGSPEG (SEQ ID NO: 11)
2	19(2.44), 36(1.94)	19(2.67), 48(2.06)	GGSGGGGGSPEGGSL (SEQ ID NO: 12)
3	11(1.98), 16(1.92), 19(2.54)	11(1.99), 19(2.78), 38(5.37)	GGGGGSPEGGSLAAL (SEQ ID NO: 13)
4	16(2.33), 17(2.02), 19(2.29), 35(2.33)	16(2.13), 17(2.02), 19(2.46), 35(2.35), 38(3.71)	GGSPEGGSLAALTAH (SEQ ID NO: 14)

TABLE 8 -continued

	Donor Responses	s to PE38 Peptides	
Peptid	e Proliferation Non-Adjusted	Proliferation Adjusted	Peptide Sequence
5	7(1.97), 10(2.24), 17(2.24), 24(1.90)	7(2.05), 10(2.46), 17(2.20)	PEGGSLAALTAHQAC (SEQ ID NO: 15)
6		3 (2.00)	GSLAALTAHQACHLP (SEQ ID NO: 16
7	3(2.11), 17(2.39), 24(2.20), 45(2.11)	3(2.30), 17(2.22), 24(2.11), 45(1.90)	AALTAHQACHLPLET (SEQ ID NO: 17)
8	17(2.23), 45(2.12)	17(2.04)	TAHQACHLPLETFTR (SEQ ID NO: 18)
9	-	-	QACHLPLETFTRHRQ (SEQ ID NO: 19)
10	-	-	HLPLETFTRHRQPRG (SEQ ID NO: 20)
11	10(2.48), 24(2.13)	7(1.98), 10(2.90), 24(2.12)	LETFTRHRQPRGWEQ (SEQ ID NO: 21)
12	-	7(1.95)	FTRHRQPRGWEQLEQ (SEQ ID NO: 22)
13	10(3.20), 24(2.12)	10(7.11), 24(2.12)	HRQPRGWEQLEQCGY (SEQ ID NO: 23)
14	10(2.14), 17(2.47), 24(2.06)	1(2.22), 10(2.04), 17(2.25), 24(2.17), 51(1.91)	PRGWEQLEQCGYPVQ (SEQ ID NO: 24)
15	17(2.04), 24(2.24)	17(2.05), 24(2.21)	WEQLEQCGYPVQRLV (SEQ ID NO: 25)
16	-	-	LEQCGYPVQRLVALY (SEQ ID NO: 26)
17	-	-	CGYPVQRLVALYLAA (SEQ ID NO: 27)
18	-	-	PVQRLVALYLAARLS (SEQ ID NO: 28)
19	-	-	RLVALYLAARLSWNQ (SEQ ID NO: 29)
20	3(2.35), 40(1.96)	3(9.55), 8(2.06), 9 (1.90), 19(1.94), 40(2.07)	ALYLAARLSWNQVDQ
21	11(1.90)	3(4.22), 8(2.22), 11(2.17), 40(1.96)	LAARLSWNQVDQVIR (SEQ ID NO: 31)
22	3(2.20), 40(2.10)	3(4.32), 6(2.17), 19(2.00), 40(2.15)	RLSWNQVDQVIRNAL (SEQ ID NO: 32)
23	6(2.24), 19(1.97)	3(4.67), 6(2.40), 19(2.22),	WNQVDQVIRNALASP (SEQ ID NO: 33)
24	3 (3.08)	3(3.99)	VDQVIRNALASPGSG
25	3(1.90), 6(1.92)	6(2.36)	(SEQ ID NO: 34) VIRNALASPGSGGDL (SEQ ID NO: 35)
26	-	-	NALASPGSGGDLGEA (SEQ ID NO: 36)
27	-	-	ASPGSGGDLGEAIRE (SEQ ID NO: 37)
28	24 (2.62)	9(1.99), 11(1.92), 24(3.47),	GSGGDLGEAIREQPE (SEQ ID NO: 38)

TABLE 8 -continued

	Donor Responses	s to PE38 Peptides	
Peptide	e Proliferation Non-Adjusted	Proliferation Adjusted	Peptide Sequence
29	4(2.05), 17(2.07), 45(2.18)	4(1.91), 17(1.96), 24(2.29), 45(2.18)	GDLGEAIREQPEQAR (SEQ ID NO: 39)
30	17(1.94)	8(2.54), 17(2.18), 24(2.44)	GEAIREQPEQARLAL (SEQ ID NO: 40)
31	-	-	IREQPEQARLALTLA (SEQ ID NO: 41)
32	-	31(1.96)	QPEQARLALTLAAAE (SEQ ID NO: 42)
33	-	-	QARLALTLAAAESER (SEQ ID NO: 43)
34	-	-	LALTLAAAESERFVR (SEQ ID NO: 44)
35	4(1.91), 35(1.91), 37(2.18), 42(2.05)	29(2.42), 35(1.98), 36(2.05), 37(2.27), 42(2.07)	TLAAAESERFVRQGT (SEQ ID NO: 45)
36	3(2.14), 42(1.91)	3(2.12), 29(3.71), 36(1.91)	AAESERFVRQGTGND (SEQ ID NO: 46)
37	37(2.34), 42(1.96)	13(1.91), 29(3.91), 35(2.06), 37(2.20)	SERFVRQGTGNDEAG (SEQ ID NO: 47)
38	37(2.20), 42(2.12)	29(2.28), 36(1.95), 37(2.20), 42(2.06)	FVRQGTGNDEAGAAS (SEQ ID NO: 48)
39	42 (1.90)	-	QGTGNDEAGAASGPA (SEQ ID NO: 49)
40	1(2.21)	1(2.08)	GNDEAGAASGPADSG (SEQ ID NO: 50)
41	1(2.28)	1(2.16)	EAGAASGPADSGDAL (SEQ ID NO: 51)
42	-	-	AASGPADSGDALLER (SEQ ID NO: 52)
43	-	-	GPADSGDALLERNYP (SEQ ID NO: 53)
44	17(2.08), 22(1.95), 42(2.02)	17(2.13), 22(2.00), 37(1.98)	DSGDALLERNYPTGA (SEQ ID NO: 54)
45	-	-	DALLERNYPTGAEFL (SEQ ID NO: 55)
46	31(2.23)	31(1.98)	LERNYPTGAEFLGDG (SEQ ID NO: 56)
47	-	-	NYPTGAEFLGDGGDI (SEQ ID NO: 57)
48	2(2.63)	-	TGAEFLGDGGDISFS (SEQ ID NO: 58)
49	-	-	EFLGDGGDISFSTRG (SEQ ID NO: 59)
50	10(2.54), 11(1.93), 19(2.29), 36(2.36), 37(1.92), 39(2.17), 42(2.66), 45(1.96)	10(2.56), 11(2.33), 19(2.37), 36(2.37), 39(2.13), 42(2.63), 45(1.95), 46(1.93)	GDGGDISFSTRGTQN (SEQ ID NO: 60)
51	19(2.03), 42(2.25), 45(1.93)	2(2.57), 11(2.06), 19(1.97), 42(2.20), 45(1.90)	GDISFSTRGTQNWTV (SEQ ID NO: 61)
52	3(7.10), 11(2.76), 16(2.41), 19(2.36), 42(1.97), 44(1.92)	2(1.95), 3(6.19), 11(3.01), 16(2.58),	SFSTRGTQNWTVERL (SEQ ID NO: 62)

131		132
	TABLE 8 -continued	

	TADDE 0		
		to PE38 Peptides	
Peptide #	Proliferation Non-Adjusted	Proliferation Adjusted	Peptide Sequence
		19(2.45), 42(2.02), 44(2.05)	
53	2(2.13), 3(5.19), 11(1.98), 16(2.12), 19(2.19), 27(2.09), 45(1.92)	2(2.27), 3(4.50), 11(2.01), 16(1.94), 19(2.10), 27(2.46)	TRGTQNWTVERLLQA (SEQ ID NO: 63)
54	-	3(1.90), 11(1.95), 16(1.92)	TQNWTVERLLQAHRQ (SEQ ID NO: 64)
55	3(1.98)	-	WTVERLLQAHRQLEE (SEQ ID NO: 65)
56	-	-	ERLLQAHRQLEERGY (SEQ ID NO: 66)
57	-	-	LQAHRQLEERGYVFV (SEQ ID NO: 67)
58	10(2.67), 11(2.90)	9(1.99), 10(2.55), 11(3.46), 4(1.90)	HRQLEERGYVFVGYH (SEQ ID NO: 68)
59	9(2.27), 37(2.56), 42(2.70)	9(2.38), 11(2.15), 37(2.71), 42(3.01)	LEERGYVFVGYHGTF (SEQ ID NO: 69)
60	-	16 (2.09)	RGYVFVGYHGTFLEA (SEQ ID NO: 70)
61	-	11(2.07)	VFVGYHGTFLEAAQS (SEQ ID NO: 71)
62	-	-	GYHGTFLEAAQSIVF (SEQ ID NO: 72)
63	3 (2.88)	11(1.97), 16(2.02)	GTFLEAAQSIVFGGV (SEQ ID NO: 73)
64	-	-	LEAAQSIVFGGVRAR (SEQ ID NO: 74)
65	2(2.17), 4(1.94), 14(3.63), 17(2.19), 18(2.46), 36(2.06), 39(1.97), 51(7.91)	2(2.30), 4(1.93), 11(2.10), 14(3.65), 18(2.31), 36(2.09), 39(2.04), 51(6.71)	AQSIVFGGVRARSQD (SEQ ID NO: 75)
66	18(1.95), 19(1.90), 36(1.94), 51(10.38)	19(2.02), 36(1.98), 47(1.91), 51(9.41)	IVFGGVRARSQDLDA (SEQ ID NO: 76)
67	6(2.07), 14(2.62), 16(2.21), 17(2.11), 18(2.60), 42(1.95), 47(1.93), 51(6.83)	14(2.68), 16(2.55), 18(2.42), 19(2.06), 38(1.95), 47(1.95), 51(5.22)	GGVRARSQDLDAIWR (SEQ ID NO: 77)
68	2(2.07), 14(2.24), 18(2.70), 38(1.94), 39(2.05), 42(2.10), 51(3.69)	2(2.12), 11(2.11), 14(2.04), 16(2.00), 19(2.06), 38(2.15), 39(2.17), 51(3.62)	RARSQDLDAIWRGFY (SEQ ID NO: 78)
69	31(1.95), 42(1.99), 51(2.47)	31(1.93), 51(2.19)	SQDLDAIWRGFYIAG (SEQ ID NO: 79)
70		24 (2.22)	LDAIWRGFYIAGDPA (SEQ ID NO: 80)
71		-	IWRGFYIAGDPALAY (SEQ ID NO: 81)
72	-	-	GFYIAGDPALAYGYA (SEQ ID NO: 82)
73	6(1.91), 14(2.70), 17(2.13), 39(1.98)	11(2.02), 14(2.77), 17(1.94), 39(2.01)	IAGDPALAYGYAQDQ (SEQ ID NO: 83)
74	6(1.99), 14(2.77), 38(1.99), 39(2.25), 42(1.90)	14(2.89), 16(2.01), 39(2.27)	DPALAYGYAQDQEPD (SEQ ID NO: 84)

TABLE 8 -continued

	Donor Responses	to PE38 Peptides	
Peptide #	Proliferation Non-Adjusted	Proliferation Adjusted	Peptide Sequence
75	6(2.22), 14(2.27), 17(1.93), 39(2.05)	14(2.24), 16(2.26), 39(2.07)	LAYGYAQDQEPDARG (SEQ ID NO: 85)
76	14(2.20), 17(1.98)	14(2.40), 39(1.94)	GYAQDQEPDARGRIR (SEQ ID NO: 86)
77	_	38(1.90)	QDQEPDARGRIRNGA (SEQ ID NO: 87)
78	-	-	EPDARGRIRNGALLR (SEQ ID NO: 88)
79	-	24(1.91)	ARGRIRNGALLRVYV (SEQ ID NO: 89)
80	9(2.89), 11(2.85), 19(2.18), 36(2.63), 42(2.23), 45(2.23)	9(2.84), 19(2.03), 36(2.59), 42(2.29), 45(2.20)	RIRNGALLRVYVPRS (SEQ ID NO: 90)
81	1(2.08), 8(1.96), 9(2.05), 11	1(2.13), 9(2.05),	NGALLRVYVPRSSLP
	(3.22), 13(2.09), 19(2.09), 36(2.21), 42(2.31), 45(2.13), 49(2.07)	13(2.10), 19(2.10), 36(2.21), 42(2.31), 45(1.94), 49(2.00), 51(2.25)	(SEQ ID NO: 91)
82	9(1.93), 10(2.01), 11(2.41), 13(2.09), 16(2.11), 19(2.01), 36(2.25), 45(1.97), 49(2.44)	9(1.90), 10(2.00), 13(2.21), 16(2.23), 19(1.98), 36(2.28), 45(1.98), 49(2.37)	LLRVYVPRSSLPGFY (SEQ ID NO: 92)
83	33(2.02), 42(2.14), 46(1.90), 49(1.92)	33(1.97), 42(2.14), 49(1.95)	VYVPRSSLPGFYRTG (SEQ ID NO: 93)
84	11(1.93)	_	PRSSLPGFYRTGLTL (SEQ ID NO: 94)
85	-	_	SLPGFYRTGLTLAAP (SEQ ID NO: 95)
86	-	_	GFYRTGLTLAAPEAA (SEQ ID NO: 96)
87	-	-	RTGLTLAAPEAAGEV (SEQ ID NO: 97)
88	9(2.59), 11(3.03), 42(2.03), 51(2.30)	9(2.47), 42(2.01)	LTLAAPEAAGEVERL (SEQ ID NO: 98)
89	9(1.91), 11(4.31), 42(2.34), 49(2.09), 51(5.22)	11(2.05), 13(2.28), 42(2.16), 51(6.48)	AAPEAAGEVERLIGH (SEQ ID NO: 99)
90	11(2.59), 14(2.07), 49(2.12), 51(7.78)	14(2.11), 49(2.11), 51(6.45)	EAAGEVERLIGHPLP (SEQ ID NO: 100)
91	11(4.15), 42(1.99), 51(4.84)	42(2.06), 51(4.07)	GEVERLIGHPLPLRL (SEQ ID NO: 101)
92	11(2.19), 49(1.99)	_	ERLIGHPLPLRLDAI (SEQ ID NO: 102)
93	_	-	IGHPLPLRLDAITGP (SEQ ID NO: 103)
94	-	_	PLPLRLDAITGPEEE (SEQ ID NO: 104)
95	3(2.10), 7(1.91), 18(1.90), 19(2.07), 35(2.17)	3(2.00), 7(1.95), 19(2.04), 45(2.03)	LRLDAITGPEEEGGR (SEQ ID NO: 105)
96	3(2.62), 13(2.19), 16(2.18), 39(1.96)	3(2.34), 13(2.46), 16(2.24), 31(1.93), 39(2.10)	DAITGPEEEGGRLET (SEQ ID NO: 106)

TABLE 8 -continued

Donor Responses to PE38 Peptides				
Peptide #	e Proliferation Non-Adjusted	Proliferation Adjusted	Peptide Sequence	
97	13(2.29), 16(2.32), 19(2.20), 35(2.43), 45(2.13)	13(2.48), 16(2.44), 19(2.31), 45(2.16)	TGPEEEGGRLETILG (SEQ ID NO: 107)	
98	11(1.92), 13(1.97), 16(2.26), 35(1.91), 50(1.98)	11(2.26), 13(2.04), 16(2.33)	EEEGGRLETILGWPL (SEQ ID NO: 108)	
99	35(2.33)	-	GGRLETILGWPLAER (SEQ ID NO: 109)	
100	35 (2.20)	-	LETILGWPLAERTVV (SEQ ID NO: 110)	
101	-	-	ILGWPLAERTVVIPS (SEQ ID NO: 111)	
102	27(1.93)	-	WPLAERTVVIPSAIP (SEQ ID NO: 112)	
103			AERTVVIPSAIPTDP (SEQ ID NO: 113)	
104	3(2.40), 16(2.20), 22(1.98), 49(1.91)	3(2.17), 13(2.05), 16(2.15)	TVVIPSAIPTDPRNV (SEQ ID NO: 114)	
105	16(2.43), 22(1.96), 45(1.97)	16(2.30), 45(1.95), 49(1.96)	IPSAIPTDPRNVGGD (SEQ ID NO: 115)	
106	16(2.02), 19(2.02)	16(1.95), 19(1.90)	AIPTDPRNVGGDLDP (SEQ ID NO: 116)	
107	19(2.00), 27(2.06)	19(1.93), 27(1.99)	TDPRNVGGDLDPSSI (SEQ ID NO: 117)	
108	-	-	RNVGGDLDPSSIPDK (SEQ ID NO: 118)	
109	_	-	GGDLDPSSIPDKEQA (SEQ ID NO: 119)	
110	8(2.07), 9(2.35), 11(2.27), 13(2.13), 16(1.91), 19(3.00), 35(1.90)	9(2.46), 10(2.04), 13(2.11), 19(1.99), 35(1.94), 38(1.95), 50(2.01)	LDPSSIPDKEQAISA (SEQ ID NO: 120)	
111	3(2.29), 8(2.20), 9(1.93), 11 (2.08),	3(2.33), 8(2.74), 9 (2.02),	SSIPDKEQAISALPD	
112	16(2.19), 19(2.60) 11(2.47), 16(3.07), 19(2.61)	13 (1.98) 9(1.90), 16 (2.11),	(SEQ ID NO: 121) PDKEQAISALPDYAS	
113	3(2.07), 11(2.61), 16(2.44),	50(1.97) 3(2.04), 11(1.93),	(SEQ ID NO: 122) EQAISALPDYASQPG	
114	19 (2.62) 19 (2.04)	45 (1.90) _	(SEQ ID NO: 123) ISALPDYASQPGKPP	
			(SEQ ID NO: 124)	
115	16(1.99)	_	LPDYASQPGKPPRED (SEQ ID NO: 125)	
116	-	_	YASQPGKPPREDLK (SEQ ID NO: 126)	
117	-	-	ITGPEEEGGRLDTIL (SEQ ID NO: 127)	
118	9(2.04), 11(2.26), 16(2.12), 39(1.93), 5	9(2.27)	PEEEGGRLDTILGWP (SEQ ID NO: 128)	
119	16(2.11), 39(2.13)	14(1.90), 38(1.96), 39(2.10)	EGGRLDTILGWPLAE (SEQ ID NO: 129)	
120	11(2.13), 39(2.05)	39 (2.07)	RLDTILGWPLAERTV (SEQ ID NO: 130)	

T Cell Epitope Map Epitopes 1 and 2—

Peptides 50, 52 and 53 induced a high number of positive T cell proliferation responses in the study cohort (Table 8 and FIG. 3). Peptide 50 showed the highest number of 5 positive responses with 15.38% donors responding in the non-adjusted dataset, and 15.38% in the adjusted data set, (SI≥2.00, p<0.05). From in silico analysis, the proposed core 9mer in this region is ISFSTRGTQ (SEQ ID NO:5). Peptides 52 and 53 induced lower frequencies of response with 10 11.54% and 13.46% positive donor responses in the nonadjusted dataset, and 13.46% and 11.54% in the adjusted datasets, respectively. A core 9mer was identified in peptide 50 but was only partially present in peptides 52 and 53 suggesting that these peptides must contain a different T cell 15 epitope. In silico analysis of peptides 52 and 53 did not identify any core HLA-DR restricted 9mers so it is likely that the positive T cell responses seen are due to a HLA-DQ restricted T cell epitope.

The magnitude of T cell proliferation responses can 20 provide an indication as to the T cell precursor frequency. In general, peptides that induce high frequency (of positive responses in the study cohort) and high magnitude T cell proliferation responses are a characteristic of 'recall-like' T cell responses in which the T cell pre-cursor frequency is 25 high. In contrast, naive T cell responses are generally characterized by low magnitude T cell proliferation responses (with low T cell precursor frequencies). Peptides 52 and 53 induced moderately high magnitude T cell proliferation responses where the mean SI for positive (SI≥2.00, 30 p<0.05) T cell responses in the non-adjusted and adjusted data sets were 3.09-2.89 (peptide 52) and 2.51-2.55 (peptide 53) (Table 9). Thus these peptides may induce T cell responses in clones that are present in high frequencies in healthy individuals and may be indicative of a memory T 35 cell response. Peptide 50 induced lower magnitude T cell proliferation responses where the mean SI were 2.23 and 2.28 in the non-adjusted and adjusted datasets respectively suggesting that this peptide may induce a naive T cell response (Table 9).

Epitopes 3 and 4

A cluster of T cell responses were observed around peptides 65-68 and the subsequent analysis revealed the presence of two T cell epitopes in this region. Peptide 65 stimulated positive T cell proliferation responses in 15.38% 45 of the study cohort for both non-adjusted and adjusted datasets (Table 8 and FIG. 3) (SI≥2.00, p<0.05). The posi-

138

tive responses were high magnitude (mean SI of positive responses ranged from 3.04-2.89 in the non-adjusted and adjusted data sets) suggesting that the T cell precursor frequency in healthy donors against this epitope is high (Table 9). In silico analysis revealed a potential core 9mer comprising IVFGGVRAR (FIG. 5; SEQ ID NO:7). Peptides 67 and 68 induced frequencies of response with 15.38% and 13.46% positive donor responses in the non-adjusted dataset, and 13.46% and 15.38% in the adjusted datasets, respectively. In silico analysis of these peptides did not identify any core HLA-DR 9mers so it is likely that the positive T cell responses seen are due to a HLA-DQ restricted T cell epitope.

Epitope 5

Peptides 81 and 82 stimulated a number of T cell responses in the study cohort (Table 8 and FIG. 3). Peptide 81 had the highest frequency of response of all the peptides tested with a frequency of positive responses of 19.23% in the non-adjusted and 17.31% in the adjusted data set. For peptide 82, the frequency of positive response was 17.31% and 15.38% in the non-adjusted and adjusted data sets respectively. The positive responses were relatively low in magnitude (mean SI of positive responses ranged from 2.12 to 2.22 in the non-adjusted and adjusted data sets) suggesting that the T cell precursor frequency in healthy donors against this epitope is relatively low (Table 9). Adjacent peptide 80 induced a sub-threshold response. In silico analysis of peptides 81 and 82 suggested a core 9mer of LRVYVPRSS (FIG. 6; SEQ ID NO:9).

Epitope 6

Peptide 110 induced positive T cell responses in 13.46% of the study cohort in non-adjusted and 13.46% in adjusted datasets (Table 8 and FIG. 3). The magnitude of positive proliferation responses was low with a mean SI of 2.23 for the non-adjusted dataset and 2.07 for the adjusted dataset (Table 9). There was also a sub-threshold response to peptide 111. In silico analysis of the peptides sequence revealed a core 9mer, IPDKEQAIS (FIG. 7; SEQ ID NO: 10) which, in addition to peptide 110, was also present in peptide 111.

Table 9. Summary of magnitude (mean SI and standard deviation) and frequency (% donor response) of positive T cell proliferation responses against peptides containing T cell epitopes for PE38. The position of p1 in potential core 9mers are shown as underlined/bolded text (as predicted by iTOPETM) in peptides 50, 65, 81, 82 and 110.

TABLE 9

	Magnitude and Frequency of Donor Responses				
		Response	Frequency	Mean (±SD)	Mean (±SD)
Peptide	Peptide Sequence	Non- Adjusted	Adjusted	Non-Adjusted Data	Adjusted Data
50	GDGGD <u>I</u> SFSTRGTQN (SEQ ID NO: 60)	15.38%	15.38%	2.23 ± 0.28	2.28 ± 0.26
52	SFSTRGTQNWTVERL (SEQ ID NO: 62)	11.54%	13.46%	3.09 ± 1.99	2.89 ± 1.50
53	TRGTQNWTVERLLQA (SEQ ID NO: 63)	13.46%	11.54%	2.51 ± 1.18	2.55 ± 0.98
65	AQS <u>I</u> VFGGVRARSQD (SEQ ID NO: 75)	15.38%	15.38%	3.04 ± 2.04	2.89 ± 1.64

139

TABLE 9 -continued

	Magnitude and Frequency of Donor Responses				
		Response	Frequency	Mean (±SD)	Mean (±SD)
Peptide	Peptide Sequence	Non- Adjusted	Adjusted	Non-Adjusted Data	Adjusted Data
67	GGVRARSQDLDAIWR (SEQ ID NO: 77)	15.38%	13.46%	2.79 ± 1.65	2.69 ± 1.15
68	RARSQDLDAIWRGFY (SEQ ID NO: 78)	13.46%	15.38%	2.40 ± 0.62	2.28 ± 0.54
81	NGAL <u>L</u> RVYVPRSSLP (SEQ ID NO: 91)	19.23%	17.31%	2.22 ± 0.36	2.12 ± 0.12
82	L <u>L</u> RVYVPRSSLPGFY (SEQ ID NO: 92)	17.31%	15.38%	2.14 ± 0.19	2.12 ± 0.17
110	LDPSS <u>I</u> PDKEQAISA (SEQ B5N0:120)	13.46%	13.46%	2.23 ± 0.38	2.07 ± 0.18

HLA Analysis

Analysis of the responding donor haplotypes was performed whereby an association between MHC class II 25 allotype and a response to a particular peptide was considered possible if the frequency of the allotype within the responding population was double the frequency observed in the study cohort. This analysis was only carried out for peptides that induced positive responses above the background response rate in the adjusted data in the study cohort and was also restricted to allotypes expressed at higher frequencies (>5%) in the study population.

Analysis of responding donor allotypes (Table 10 and FIG. 8) revealed that there was a possible association

allotypes as the present analysis was performed on a small group of responding donors.

Table 10. Frequency (expressed as a percentage) of responding donor allotypes compared to the frequency of allotypes expressed in the IEX01 study cohort. An association between MHC class II allotype and a response to a particular epitope was considered if the frequency of the allotype within the responding population was double the frequency observed in the study population in the adjusted data set. Possible associations are indicated in heavily bordered boxes. The analysis has been restricted to allotypes expressed at higher frequencies (>5%) in the study population.

TABLE 10

Frequency of responding donor allotypes versus

frequency of allotypes in the IEX01 study cohort.								
Frequency								
(%) of								
HLA								
alleles								
expressed								
within:	DRB1*03	DRB1*04	DRB1*07	DRB1*11	DRB1*15	DRB3	DRB4	DRB5
Study	8	8	7	5	7	20	18	6
population								
Peptide 50	8	8	12	0	8	23	15	4
Peptide 52	4	8	8	8	4	24	20	0
Peptide 53	5	10	5	10	5	24	19	0
Peptide 65	12	0	12	8	0	32	16	0
Peptide 67	8	13	0	8	8	25	21	0
Peptide 68	7	7	7	4	7	25	21	0
Peptide 81	7	0	14	7	7	21	21	7
Peptide 82	8	8	15	0	15	15	23	8
Peptide 110	4	13	4	0	17	13	25	8

between T cell responses to peptides 81, and 82 and MHC class II allotype HLA DRB 1*07 which was expressed at twice the percentage of positively responding donors compared to the study population. Peptide 53 also had a possible association with DRB 1*11, and peptides 82 and 110 showed possible associations with DRB1*15. It should be noted that further studies (such as MHC class II binding analysis) would be required to show conclusively that responses to the T cell epitope are associated with these

Results

The results show that six T cell epitopes were present in the PE38 sequence. Table 6 Table 11 and FIG. 8 summarize the location of the putative core 9mers in each sequence along with the frequency and magnitude of T cell responses against each epitope. The T cell epitopes identified in PE38 were prioritized according to their potency based on the frequency and magnitude (mean SI) of positive donor responses to each peptide. However since the responding donor magnitudes were similar (Table 4 Table 9) for most

25

141

epitopes, the ranking was mainly based on frequency of positive donor responses (from highest to lowest):

Epitope 5>Epitope 4>Epitope 3>Epitope 1>Epitope 2>Epitope 6

Deimmunization Strategy

The six epitope core 9mer sequences were analyzed by proprietary software (iTOPETM) in order to identify mutations that remove the T cell epitopes by eliminating or significantly reducing binding to MHC class II (Table 11). As part of the strategy as to which residues to mutate, ¹⁰ location within the structure was considered, especially whether the residue is buried, on the surface, or near active sites

Table 11. Projected mutations to remove MHC class II binding (based upon iTOPETM and crystal structure data).

TABLE 11

Location of Core 9-mers and Projected Mutations					
Epi- tope	Amino Acids in Sequence	Anchor Residues	Projected Mutations	Notes:	
1	I	1	A, N, T,	P1 (IIe) is partially	
	S		Q, H	surface exposed, therefore all alternatives should	
	F S	4		be possible.	
	S T	4		P6 and P9 changes perform equally well,	
	R	6	Q	but are less preferred	
	G T	7		than P1 changes.	
2	Q G	9	N, T	III A DO 'A 1	
2	T	1		HLA-DQ epitopes have a strong negative preference	
	Q	4	IZ D	for positively charged	
	N W	4	K, R	residues in key anchor positions. All four	
	T	6	K, R	mutations are equally	
	V E	7		preferred.	
3	R I	9	A NI	D1 is buried therefore A	
3	V	1	A, N	P1 is buried, therefore A is preferred.	
	F G	4		P6 V is partially exposed. All mutations should be	
	G	4		tolerated. Preference is	
	V R	6 7	D, M, N	D > M > N.	
	A	,			
4	R A	9 1		III A DO anitanaa haya a	
4	R	1		HLA-DQ epitopes have a strong negative preference	
	S Q	4	K, R	for positively charged residues in key anchor	
	D	4	K, K	positions. All four	
	L D	6 7	K, R	mutations are equally preferred.	
	A	,	K, K	picienea.	
5	I L	9 1	Α	P1 is buried and close in	
,	R	1	D, S, A	the structure to epitope 3	
	V Y	4		P1, therefore changes are limited. For this epitope,	
	V			changes at P2 affect	
	P R	6 7		binding (D > S > A). P9 is mostly surface	
	S			exposed. Preferred	
	S	9	D, E, N, K, P, T	changes are D, E, N, then $K > P > T$.	
6	I	1	A, N, T,	P1 I is partially surface	
	P		Q, H	exposed, therefore all alternatives should be	
	D			possible.	
	K E	4	T	P4, P6 and P9 changes are less preferred than P1	
	Q	6	D	changes. P6 D ≥ P7 D >	

142
TABLE 11-continued

	Location of Core 9-mers and Projected Mutations					
Epi- tope		Anchor Residues	Projected Mutations	Notes:		
	A	7	D	P4 T.		
	I S	9				

Conclusions

EPISCREENTM T cell epitope mapping of 120 overlapping 15mer peptides including 112 spanning the entire PE38 sequence suggested six novel T cell epitopes. In silico analysis was used to identify potential core 9mers for MHC binding and, together with structural analysis, was used as a basis for design of changes for re-engineering and deimmunizing PE38 in particular, and PE molecules in general.

Example 2

T Cell Epitope Mapping of Deimmunized/Amino Acid Substituted Forms of PE

The immunogenicity of amino acid substituted forms of PE can be assessed using the same procedures as described in Example 1. Accordingly, EPISCREEN™ T cell epitope mapping analysis (Antitope Ltd, Cambridge, UK) analysis permits identification of amino acid substituted epitopes in PE polypeptides, wherein the introduced amino acid changes result in reduced or undetectable immunogenicity (i.e., for generating deimmunized forms of PE) as compared to epitopes in corresponding forms of non-amino acid substituted PE polypeptides.

EPISCREENTM is a proprietary technology commercially available through Antitope Ltd, Cambridge, UK, to map T cell epitopes within a protein sequence to determine poten-40 tial for immunogenicity (based on the number and potency of T cell epitopes within a sequence). EPISCREENTM T cell epitope mapping typically uses CD8+ T cell depleted PBMCs from a minimum of 50 HLA-typed donors (selected to represent the human population of interest). Typically, 45 15mer peptides with 12 amino acid overlaps spanning a protein sequence are analyzed in a large number of replicate cultures for in vitro CD4+ T cell stimulation by 3H TdR incorporation. CD4+ T cell stimulation is often detected in two or three adjacent and overlapping peptides since the 50 core 9mer that binds the MHC class II binding groove will be present in more than one peptide sequence. Following identification of peptides that stimulate CD4+ T cells in vitro, in silico technology can be used to design epitopedepleted (deimmunized) variants by determining the precise 55 location of core 9mer sequences and the location of key MHC class II anchor residues.

In this case, amino acid substituted PE peptides are analyzed for the presence of immunogenic CD4+ T cell epitopes using EPISCREEN™ T cell epitope mapping analysis. For example, amino acid substituted 15mer peptides (compared to non-substituted 15mer peptides corresponding to a non-amino acid substituted form of PE) are tested against a cohort of healthy donors. CD4+ T cell responses against individual peptides are measured using proliferation assays (3H-thymidine incorporation). Proliferation assay data is used to compile a T cell epitope map of varying responses to amino acid substituted forms of PE to

determine those amino acid changes producing reduced or abrogated immunogenic responses.

EPISCREENTM Donor Assessments

Peripheral blood mononuclear cells (PBMC) are isolated from healthy donor buffy coats (e.g., from blood drawn 5 within 24 hours). For example, PBMC are isolated from buffy coats using density gradient centrifugation using LYMPHOPREPTM (Axis-Shield UK, Dundee, Scotland) or a similar density gradient centrifugation media for the isolation of human mononuclear cells from blood (such methods, 10 media and products are well known and routinely used by those skilled in the art). See e.g., Axis-Shield, package insert for LYMPHOPREPTM density gradient media No. 619. March 03. Div.—1114740.) To remove CD8+ cells from the isolated mononuclear cells, CD8+ T cells are depleted using CD8+ ROSETTESEPTM kit (STEMCELLTM Technologies Inc, Manchester, UK) or similar CD8+ selection methods and techniques (such methods, media and products are well known and routinely used by those skilled in the art). See e.g., StemCell Technologies Inc., ROSETTESEPTM proce- 20 dure for Human CD8+ T Cell Enrichment Cocktail (Catalog #15023/15063; Procedure version 1.3.0, "#28572 (May

Donors HLA-DR haplotypes are determined using methods or kits well-known and routinely used by those skilled 25 in the art. For example, Donors HLA-DR haplotypes are determined using a Biotest HLA SSP-PCR tissue-typing kit (Biotest, Solihull, UK, catalogue number 826215). T cell responses to a reproducibility control antigen are measured using, for example neo-antigen, using Imject maricutlure 30 keyhole limpet haemocyanin (KLH) (Pierce (Perbio Science UK, Ltd), Cramlington, UK, catalogue number 77600), or other similar control antigen (such antigens and methods are well known and routinely used by those skilled in the art). for use in to measuring immunogenicity of amino acid substituted forms of PE.

A cohort of donors are selected to best represent the number and frequency of HLA-DR allotypes expressed in the world population. It is desirable that allotypes expressed 40 in the cohort represent a coverage of >80% of all major HLA-DR alleles in the world population (i.e., individual allotypes with a frequency >5% expressed in the world population are well represented). Records of individual donor haplotypes and comparison of the frequency of MHC 45 class II haplotypes expressed in the world population and the sample population are recorded and assessed.

Donor responses (SI) to a control antigen (such as KLH) are assessed by comparing two independent proliferation assays. Test-1 is performed using the control antigen (such 50 as KLH) on freshly isolated PBMC and Test-2 is the control antigen re-test performed on PBMC recovered from liquid nitrogen storage, the latter of which are used in assessing immunogenicity of amino acid substituted epitopes in PE. Responses that do not produce the same result in these two 55 tests (i.e. positive including borderline SI>1.90 p<0.05 or negative) in both tests are disregarded.

EPISCREEN™ Analysis: Proliferation Assay

PBMC from each donor are thawed, counted and viability is assessed. Cells are revived in room temperature AIM V® Culture Medium (INVITROGEN™, Paisley, UK) before adjusting cell density to 2-3×10⁶ PBMC/ml (proliferation cell stock). Peptides are synthesized on a 1-3 mg scale with free N-terminal amine and C-terminal carboxylic acid. Peptides are dissolved in DMSO to a concentration of 10 mM 65 and peptide culture stocks are prepared by diluting into AIM V® Culture Medium to a final concentration of 5 µM per

144

well. For each peptide and each donor, sextuplicate cultures are established in a flat bottomed 96 well plate. Both positive and negative control cultures are tested in sextuplicate. For each donor, three control antigen/peptides (KLH protein and peptides derived from Influenza A and Epstein Barr viruses) are also included.

Cultures are incubated for 6 days before adding 0.75 µCi 3[H]-thymidine (PERKIN ELMER®, Beaconsfield, UK) to each well. Cultures are incubated a further 18 hours before harvesting onto filter mats using a TOMTEC MACH® III cell harvester (TOMTEC®, Hamden, Conn., USA). Counts per minute (cpm) for each well are determined by MELT-ILEXTM (PERKIN ELMER®) scintillation counting on a Microplate Beta Counter (PERKIN ELMER®) in paralux, low background counting mode.

EPISCREEN™ Data Analysis

In proliferation assays, an empirical threshold of stimulation index (SI) equal to or greater than 2 (SI≥2.00) is considered to represent an induced proliferative response; samples registering values above this threshold are deemed positive (values of SI<2.00 but ≥1.90 are considered borderline). Extensive assay development and previous studies have shown that this is the minimum signal to noise threshold allowing maximum sensitivity without detecting large numbers of false positive responses. Positive responses are defined by the following statistical and empirical thresholds:

- 1. Significance (p<0.05) of the response by comparing cpm of test wells against medium control wells using unpaired two sample Student's t-test.
- 2. Stimulation index greater than 2.00 (SI≥2.00), where SI=mean cpm of test wells/mean cpm medium control wells. Thus, data presented is indicated as SI≥2.00, p<0.05.

In addition, intra-assay variation is assessed by calculat-PBMC are frozen and stored in liquid nitrogen until ready 35 ing the coefficient of variance and standard deviation (SD) of raw data from replicate cultures.

> Proliferation assays are set up in sextuplicate cultures from which "non-adjusted data" is gathered. To ensure intra-assay variability is low, data is also analyzed after removing maximum and minimum cpm values (to produce "adjusted data") and the SI of donor responses is compared using both data sets.

> Reactive T cell epitopes are identified by calculating the average frequency of positive responses (defined above) to all peptides in the study plus standard deviation (SD) to give a background response threshold. Any peptide inducing a frequency of positive proliferation responses above the threshold in both adjusted and non-adjusted data is considered to contain an immunogenic T cell epitope (and, thus, potentially represents an immunogenicity inducing epitope which could give rise to immunogenic responses in vivo). Output from non-adjusted and adjusted data is examined to ensure that intra-assay variability is low and that positive responses are not the result of spurious proliferation in individual wells. An example of this type of analysis is provided in Example 1.

> A comparison of corresponding forms of non-amino acid substituted PE immunogenic epitope responses versus responses obtained with amino acid substituted PE peptides is used to assess and predict the effects of various amino acid substitutions in reducing or eliminating the immunogenicity of PE polypeptides (i.e., for making deimmunized forms of

> Assays for measuring and testing the immunogenicity of amino acid substituted forms of PE may also be done as described and exemplified in Example 1 (i.e., via proliferation assays quantitating CD4+ T cell responses) wherein

145

amino acid substituted forms of PE (i.e., "deimmunized PE" or "DI-PE"), and/or DI-PE conjugates and fusion proteins (e.g., fusions of DI-PE to antibodies or antigen-binding fragments thereof) are tested and measured for the presence and potency of immunogenic responses compared to 5 responses induced by corresponding forms of non-amino acid substituted PE peptides, polypeptides, and fusion or conjugation constructs.

Assays for measuring immunogenicity of amino acid substituted forms of PE specifically (as indicated above), or ¹⁰ PE molecules, generally, may also be done according to methods routinely used and well-known to those of skill in the art. For example, immunogenicity of amino acid substituted forms of PE, in particular, or PE molecules, in general, (as indicated above) may be measured in vivo in non-human ¹⁵ primates and/or in transgenic mouse model systems.

Example 3

Measuring Biological Activity of Amino Acid Substituted Forms of PE

Assays for measuring the biological activity of amino acid substituted/deimmunized forms of PE, may be done according to methods routinely used and well-known to those of 25 skill in the art. Measured biological activities of deimmunized ("DI") forms of PE ("DI-PE"), in particular, or PE molecules, in general, may include, for example, assays to measure:

- a) general or specific inhibition of protein synthesis (i.e., 30 measuring inhibition of synthesis of a specific protein (or specific proteins) or inhibition of overall (mass) protein synthesis;
- b) inhibition of translation elongation factor EF-2 biological activity;
- c) induction or catalysis of ADP-ribosylation of EF-2; and d) eukaryotic cell killing activity (cell cytotoxicity).

Assays for Biological Activity: Inhibition of Protein Synthesis

In one example, measurement of inhibition of protein 40 synthesis may be done via use of in vitro transcription/ translation assays (which are routinely used and well-known to those of skill in the art). For example, a cell-free assay may be used to measure DI-PE induced inhibition of in vitro transcription/translation of a target plasmid (such as, but not 45 limited to, T7-luc). In the case of using a T7-luc transcription/translation assay, the biological activity readout would be chemiluminescent measurement of luciferase activity wherein amino acid substituted forms of PE are compared to corresponding non-amino acid substituted forms of PE for 50 ability/inability to inhibit translation of the luciferase enzyme in vitro. In such assays, the PE polypeptides being assayed can be introduced via expression from template DNA (e.g., a PCR product) encoding the toxin-conjugate gene, or by directly introducing quantified amounts of PE 55 proteins. Such assays may be used to assess IC50 values* of the various forms of PE tested (*IC50=concentration at which 50% of protein synthesis is inhibited versus standardized control samples lacking PE).

Some examples of kits and reagents available for in vitro 60 transcription/translation assays include, but are not limited to:

TNT® SP6 Coupled Reticulocyte Lysate System (e.g., PROMEGA® catalog #L4610 (PROMEGA® Corp., Madison, Wis., USA)) allows for eukaryotic cell-free 65 protein expression in a single-tube, as a coupled transcription/translation process. More traditional rabbit

146

reticulocyte lysate translations commonly use RNA synthesized in vitro from SP6, T3 or T7 RNA polymerase promoters and require three separate reactions with several steps between each reaction. The TNT® System bypasses many of these steps by incorporating transcription directly into the translation mix. See e.g., PROMEGA® Technical Bulletin #TB126 (Revised 12/2010) which is incorporated by reference herein. See also, Pelham et al., *Eur. J. Biochem.* 67, 247-56 (1976); Krieg et al., (1984) Nucl. Acids Res. 12, 7057-7070 (1984). See also, U.S. Pat. Nos. 5,324,637; 5,492,817; 5,641,641; and, 5,650,289.

TNT® T7 Quick Coupled Transcription/Translation System (e.g., PROMEGA® catalog #L1170 (PRO-MEGA® Corp., Madison, Wis., USA)) further simplifies in vitro transcription/translation reactions by combining RNA polymerase, nucleotides, salts and Recombinant RNasin® Ribonuclease Inhibitor with the reticulocyte lysate to form a single TnT® Quick Master Mix. The TnT® Quick Coupled Transcription/Translation System may be used with plasmids for transcription and translation of genes cloned downstream from either the T7 or SP6 RNA polymerase promoters. The TnT® Quick System includes a luciferase-encoding control plasmid and Luciferase Assay Reagent, which can be used in a non-radioactive assay for rapid (<30 seconds) detection of functionally active luciferase protein. Starting with either circular plasmid DNA or PCR-generated DNA, in vitro transcription/translation results may be obtained in 5-6 hours. See e.g., PRO-MEGA® Technical Bulletin #TM045 (Revised 05/2011) which is incorporated by reference herein.

STEADY-GLO® Luciferase Assay System (e.g., PRO-MEGA® catalog #E2510) (PROMEGA® Corp., Madison, Wis., USA)) allows for high-throughput quantitation of firefly (Photinus pyralis) luciferase expression in mammalian cells via batch processing of 96- and 384-well plates. The STEADY-GLO® Luciferase Assay System provides signal half-lives of over 5 hours in commonly used cell culture media without prior sample processing. Throughput rates of several thousand samples per hour may be achieved with high reproducibility under standard laboratory conditions. See e.g., PROMEGA® Technical Bulletin #TM051 (Revised 03/2009 & Revised 09/2011) which is incorporated by reference herein. See also, U.S. Pat. Nos. 5,641,641; 5,650,289; 5,583,024; 5,674,713; ands 5,700,673.

Full protocols for use of such kits are provided by the manufacturer with each kit. A brief example of a typical experimental procedure may include:

Assembling kit reagents (except target T7-luc plasmid), plus PE test samples (using an experimentally determined titration of PE test samples; e.g., in a range of 0-500 ng DNA per reaction for PCR templates or using a PE protein titre in a range to be determined experimentally), in a total volume of 12.5 ul RNAse-free water in PCR tubes or cell wells on plates.

For plasmid DNA: Pre-incubate for required time (e.g. 30-60 min, time to be determined experimentally) at 30° C. to allow pre-reaction transcription/translation to occur

For purified protein: No pre-incubation step required.

Add target plasmid T7-luc (e.g. 250 ng/reaction, determined experimentally) and incubate further (e.g. 30-60 min, time to be determined experimentally) at 30° C.

Stop reaction by placing on ice. Increase sample volume to 50 ul with RNAse-free water.

Add luciferase reagent (e.g. SteadyGlo, 50 ul per well) to each well, incubate according to manufacturer's instructions, transfer to 96 well black/white plate and 5 read chemiluminescent signal via chemiluminescence platereader.

Compare to 'zero toxin' control samples (i.e., no PE present) to determine the % inhibition of transcription/ translation (i.e., as a function of inhibition of luciferase 10 activity).

Compare inhibition of transcription/translation values of amino acid substituted/deimmunized forms of PE compared to corresponding forms of non-amino acid substituted PE.

Comparative protein synthesis inhibition values may show that various forms of DI-PE exhibit 100% or about 100% of biological activity (inhibition of protein synthesis) compared to corresponding forms of non-amino acid substituted PE. Comparative protein synthesis inhibition values 20 may also show that various forms of DI-PE exhibit at least 95%, or at least about 95%, at least 90%, at least about 90%, at least about 85%, at least 80%, at least about 85%, at least 70%, at least about 70%, at least about 75%, at least 70%, at least about 70%, at least about 50% of biological activity compared to corresponding forms of non-amino acid substituted PE.

Assays for Biological Activity: Cell Cytotoxic Activity
In one example, measurement of cell cytotoxic activity
may be done via use of in vitro cell based assays wherein 30
deimmunized PE (DI-PE)-antibody conjugates are assayed
in comparison to non-amino acid substituted PE-antibody
conjugates. The antibody portion of such conjugates would
be antibodies, or antigen-binding fragments thereof, which
specifically bind antigens expressed on the cell-surface of
cell types used in such in vitro assays. Cell cytotoxicity may
be quantitated, for example, by measuring cell lysis wherein
the biological readout is represented by measurement of, for
example, based on chemiluminescent (LUMI), fluorometric
(FL), and colorimetric (COL) outputs; such as can be 40
practiced using commercially available kits routinely used
and well-known to those of skill in the art.

Some examples of kits available for measurement and comparison of DI-PE versus non-amino acid substituted PE cell cytotoxicity include, without limitation:

TOXILIGHT® BioAssay Kit (e.g., Catalog # #LT07-117 (Lonza Rockland, Inc., Rockland, Me., USA)) is a non-destructive bioluminescent cytotoxicity assay that quantitatively measures release of Adenylate Kinase (AK) from damaged mammalian cells and cell lines in 50 vitro. The assay is based on the bioluminescent measurement of AK which is present in all cells. A loss of cell integrity, through damage to the plasma membrane, results in the leakage of a number of factors from cells cultured in vitro into the surrounding medium. The 55 measurement of the release of AK from the cells allows the accurate and sensitive determination of cytotoxicity and cytolysis. The reaction involves two steps. The first involves the addition of ADP as a substrate for AK. In the presence of the enzyme, AK, the ADP is converted 60 to ATP for assay by bioluminescence. The bioluminescent part of the assay utilizes the enzyme Luciferase, which catalyses the formation of light from ATP and luciferin. By combining these two reactions, the emitted light intensity is linearly related to the AK concen- 65 tration and can be measured using a luminometer or beta counter. See, "TOXILIGHT® BioAssay Kit:

148

Instructions for Use," ©2007 Lonza Rockland, Inc., which is incorporated by reference herein. See also, Crouch, et al., *J. Immunol. Methods*, 160(1):81-88 (1993); Olsson, T. et al., *J. Appl. Biochem* 5, 347-445 (1983); and, Squirrell et al., *A Practical Guide to Industrial Uses of ATP Luminescence in Rapid Microbiology*, p. 107-113 (1997).

CYTOTOX-GLO® (e.g., PROMEGA® catalog #G9290 (PROMEGA® Corp., Madison, Wis., USA)) is a luminescent cytotoxicity assay that measures the relative number of dead cells in cell populations. The assay measures extracellular activity of a distinct intracellular protease activity (dead-cell protease) when the protease is released from membrane-compromised cells. A luminogenic cell-impermeant peptide substrate (AAF-aminoluciferin) is used to measure dead-cell protease activity. The liberated aminoluciferin product is measured as "glow type" luminescence generated by ULTRA-GLOTM Recombinant Luciferase provided in the assay reagent. The AAF-aminoluciferin substrate cannot cross the intact membrane of viable cells and does not generate appreciable signal from the live-cell population. The amount of luminescence directly correlates with the percentage of cells undergoing cytotoxic stress. With the addition of a lysis reagent (provided with the kit), the CYTOTOX-GLOTM Assay provides a luminescent signal associated with the total number of cells in each assay well. Viability can be calculated by subtracting the luminescent dead-cell signal from the total luminescent value, thus allowing normalization of assay data to cell number and mitigation of assay interferences. The cytotoxicity protease biomarker is constitutive and conserved across cell lines. See e.g., PROMEGA® Technical Bulletin Nos. TB359 (Revised 05/2009 & Revised 10/2011) which is incorporated by reference herein. See also, Niles, A. et al. (2007) Anal. Biochem., 366, 197-206 (2007) and U.S. Pat. Nos. 6,602,677 and 7,241,584.

CYTOTOX-ONETM kit (e.g., PROMEGA® catalog #G7891 (PROMEGA® Corp., Madison, Wis., USA)) allows performance of homogeneous membrane integrity assays wherein a fluorometric method may be used to estimate the number of nonviable cells present in multiwell plates. This assay measures the release of lactate dehydrogenase (LDH) from cells with damaged membranes. LDH released into the culture medium is measured with a coupled enzymatic assay that results in the conversion of resazurin into a fluorescent resorufin product. The amount of fluorescence produced is proportional to the number of lysed cells (which may be monitored using a 96- or 384-well plate formats). The CYTOTOX-ONE™ Reagent does not damage normal healthy cells. Therefore, reactions to measure released quantities of LDH can be performed directly in a homogeneous format in assay wells containing a mixed population of viable and damaged cells. See e.g., PROMEGA® Technical Bulletin #TB306 (Revised 05/2009) which is incorporated by reference herein. See also, U.S. Pat. Nos. 6,982,152 and 7,282,348.

CELLTITER GLO® Luminescent Cell Viability Assay (e.g., PROMEGA® catalog #G7571 (PROMEGA® Corp., Madison, Wis., USA)) provides a homogeneous method for determining the number of viable cells in a culture based on quantitation of the amount of ATP present (an indicator of metabolically active cells). The CELLTITER GLO® Assay is particularly useful for automated high-throughput screening (HTS), cell pro-

liferation and cytotoxicity assays. The homogeneous assay procedure involves adding the single reagent (CELLTITER GLO® Reagent) directly to cells cultured in serum-supplemented medium. The assay allows for detection of as few as 15 cells/well in a 5 384-well format in 10 minutes after adding reagent and mixing. The homogeneous "add-mix-measure" format results in cell lysis and generation of a luminescent signal proportional to the amount of ATP present (which is directly proportional to the number of cells 10 present in culture). The CellTiter-Glo® Assay generates a "glow-type" luminescent signal, which has a half-life generally greater than five hours, depending on cell type and medium used. See e.g., PROMEGA® Technical Bulletin Nos. TB288 (Revised 06/2009 & 15 Revised 08/2011) which are incorporated by reference herein. See also: U.S. Pat. Nos. 6,602,677; 7,241,584; 7,700,310; 7,083,911; 7,452,663; 7,732,128; 7,741, 067; 5,583,024, 5,674,713; and 5,700,673.

VIALIGHT® Plus Kit (e.g., Catalog ##LT07-221 (Lonza Rockland, Inc., Rockland, Me., USA)) may be used for rapid detection of cytotoxicity in mammalian cells and cell lines in culture via determination of ATP levels. Any form of cell injury results in a rapid decrease in cytoplasmic ATP levels. Therefore, the VIALIGHT® 25 Plus Kit may be used to measure a wide range of biological activities effecting cell viability. The kit is formulated for use with a microtitre plate reading luminometer for assay automation. The assay is based on bioluminescent measurement of ATP is present in all metabolically active cells. The bioluminescent method utilizes an enzyme, luciferase, which catalyses the formation of light from ATP and luciferin according to the following reaction:

ATP+Luciferin+O2-Luciferase/Mg²⁺->Oxyluciferin+ AMP+PPi+CO₂+LIGHT

The emitted light intensity is linearly related to the ATP concentration and can be measured using a luminometer or beta counter. The assay is conducted at ambient 40 temperature (18° C.-22° C.), the optimal temperature for luciferase enzymes. See, "VIALIGHT® Plus Kit: Instructions for Use," ©2007 Lonza Rockland, Inc, which is incorporated by reference herein.

Full protocols for use of such kits are provided by the 45 manufacturer with each kit. A brief example of a typical experimental procedure may include:

Plate cells to test plate (e.g., 96 well plates) in growth medium.

Incubate cells with titrations of amino acid substituted 50 forms of PE-toxin conjugates (including zero toxin and non-amino acid substituted PE controls (up to a maximum toxicity point, e.g. 100% cell lysis) for required time (determined experimentally, e.g. 48-72 hr).

Add kit reagents for cytotoxicity measurements as per 55 manufacturer's instructions.

Transfer test samples to 96 well black/white walled plate (as appropriate) and read reaction signal output.

Compare cell cytotoxicity values obtained for substituted/ deimmunized forms of PE versus corresponding nonamino acid substituted forms of PE.

Comparative cell cytotoxicity values may show that various forms of DI-PE exhibit 100% or about 100% of biological activity (induction of cell cytotoxicity) compared to corresponding forms of non-amino acid substituted PE. 65 Comparative cell cytotoxicity values may also show that various forms of DI-PE exhibit at least 95%, or at least about

150

95%, at least 90%, at least about 90%, at least 85%, at least about 85%, at least 80%, at least about 80%, at least 75%, at least about 75%, at least about 70%, at least about 70%, at least 60%, at least about 60%, at least 50%, or at least about 50% of biological activity compared to corresponding forms of non-amino acid substituted PE.

Example 4

Measuring Ability of Deimmunized PE Variants to Inhibit Protein Synthesis

Quantitative in vitro transcription/translation (IVTT) assays to assess the biological activity of deimmunized variants of PE in inhibiting protein synthesis (i.e., possess wild-type PE biological activity) may be performed using the TNT® Quick Coupled Transcription/Translation Systems assay from PROMEGA® Corp. (Madison, Wis., USA). See, PROMEGA® Technical Bulletin #TB 126 (Revised 12/2010) which is incorporated by reference herein.

Example 5

Measuring Ability of a PE-IL2 Fusion Protein to Inhibit Protein Synthesis in an In Vitro Transcription/Translation (IVTT) Assay

A preliminary experiment was performed to compare the ability of a PE-IL2 fusion protein to inhibit protein synthesis in an in vitro transcription/translation assay when a commercially available PE-IL fusion protein is translated in vitro following transcription from either a circular plasmid expression vector or a linearized plasmid expression vector. The PE-IL2 expression vector in this experiment is referred to as "VVN-52431." A few examples of IL2-PE fusion construct are shown in SEQ ID NO: 164, 165 and 166. The aim of this experiment was to determine if circular or linearized plasmids produced significantly different quantities of PE-IL protein in the PROMEGA® Corp. TNT® Quick Coupled Transcription/Translation Systems assay. A commercially available T7 Promoter/Luciferase expression vector (PROMEGA® Corp.; hereinafter "T7-Luc DNA") was used to measure the ability of PE-IL2 to inhibit protein synthesis in vitro.

Based on a pilot IVTT experiment, it was determined that $0.2~\mu g$ T7-Luc DNA provided optimal RLU (Relative Light Units) in a 90 minute IVTT reaction. In this experiment, VVN-52431 was linearized using the restriction enzyme Fsp-I. Linearized and circular VVN-52431 DNA were used as templates in the IVTT reactions. Reactions were done in triplicate, using 0.5, 1 and $2~\mu g$ of DNA. The T7 control reaction was performed using $1~\mu g$ DNA. Reactions were analyzed via SDS-PAGE and by Luciferase assay.

Materials:

Item	Vendor	Lot #
Nuclease-free water (1000 ml)	Ambion	1105062
TNT T7 Quick Coupled T/T system	PROMEGA ®	328577
T7 luciferase plasmid DNA (From	PROMEGA ®	
same kit)		
Fsp I	NEB	0571101
Dual Glo ® Luciferase Assay	PROMEGA ®	322310
System		
Ultrapure Water	GIBCO	896656
Tris-Glycine SDS Sample Buffer,	Invitrogen	743995

-continued

151 152 -continued

Item	Vendor	Lot #
10x Reducing Agent	Invitrogen	897034
Criterion Tris HCl 4-15%, 1 mm,	Bio-Rad	400059499
12 + 2 well		
Precision Plus Protein Standards,	Bio-Rad	310009928
Kaleidoscope		
10x Tris/Glycine/SDS Buffer	Bio-Rad	210007884
Gelcode Blue Safe Protein Stain	ThermoFisher	LL152043

Equipment:

Item	Vendor	ID#	— 15
P20, P200, P1,000	Rainin	N/A	
Water bath Luminometer			
Power Pac HC	Bio-Rad	N/A	
Heat block	VWR	N/A	
Microcentrifuge, refrigerated	Eppendorf	N/A	20
Platform Adjustable Tilt Rocker	Labnet	N/A	
Thermal cycler	MJ Research	N/A	

Procedure:

Per manufacturer's instructions: Except for the actual transcription/translation incubation, all handling of the TNT® Quick Master Mix was performed at 4° C. Unused Master Mix was refrozen as soon as possible after thawing to minimize loss of translational activity.

Restriction Digest:

In PCR tubes, the following were combined:

VVN-52431 was linearized by combining the following:

Rxn	NF H ₂ O (μL)	VVN52431 (μL)	Fsp I dig.	final	Reaction Product
1	5	5 (5 µg)	0	0.5 µg/µl	Circular Vector - No Restriction enzyme added
2	4	5 (5 μg)	1	0.5 µg/µl	Linearized Vector

Reactions were incubated at 37° C. for 60 min. Reactions were heat inactivated at 65° C. for 20 min. IVTT Reactions:

1. In nuclease-free 1.5 ml eppendorf tubes, the following were combined according to the chart below:

Diluted T7-Luc DNA in NF (nuclease free) water at 1:5. Final DNA concentration=0.1 μg/μl.

Serial diluted unlinearized and linearized VVN-52431 DNA (0.5 μg/μl) in NF water at 1:5. Final concentration=0.5 μ g/ μ l, 0.1 μ g/ μ l, 0.02 μ g/ μ l.

Rxn	NF H ₂ O (μL)	T7 Luc DNA (μL)	VVN52431 (μL)	Fsp I dig.	Methi- onine (μL)	T7 TNT rex (μL)
1	7	2 (0.2 μg)			1	40
2	7		2 (1 μg)	_	1	40
3	7		2 (1 μg)	+	1	40
4	5	2 (0.2 µg)	2 (1 μg)	-	1	40
5	5	2 (0.2 μg)	2 (0.2 μg)	_	1	40
6	5	2 (0.2 µg)	2 (0.04 µg)	-	1	40
7	5	2 (0.2 μg)	2 (1 μg)	+	1	40

_	Rxn	NF H ₂ O (μL)	T7 Luc DNA (μL)	VVN52431 (μL)	Fsp I dig.	Methi- onine (μL)	T7 TNT rex (μL)
	8	5	2 (0.2 μg)	2 (0.2 μg)	+	1	40
	9	5	2 (0.2 μg)	2 (0.04 μg)	+	1	40
	10	9				1	40

- 2. Reactions were incubated at 30° C. for 90 minutes in a water bath.
- 3. Reactions were analyzed for the synthesis of functional Luciferase using a standard Luciferase assay.

Luciferase Assay:

1. Luciferase assay substrate was prepared according to manufacturer's instructions:

Reagent Kit was thawed at room temperature.

Dual-Glo® Luciferase Buffer was transferred into the Dual-Glo® Luciferase Substrate bottle and shaken slightly to ensure the substrate dissolved.

Dual-Glo® Stop & Glo® substrate was transferred into the Dual-Glo® Stop & Glo® buffer and mixed well. Rehydrated reagent was aliquoted into 15 ml centrifuge tube (10 ml/tube) and wrapped with Aluminum foil. Rehydrated reagent was stored at -80° C. until ready for use (the reagent is good for 6 months).

- 2. 5 µl of reaction end products/well were transferred into a 96-well white plate
- 3. $100\,\mu\text{L}$ of the Luciferase Assay Reagent was dispensed per well and mixed by pipetting 2-3x.
- 4. RLU's for each well on plate were read within 10

Results:

Results are shown in FIG. 9. Circular plasmid expression = 35 vector encoding PE-IL2 fusion protein was slightly better at inhibiting Luciferase protein synthesis compared to linearized plasmid encoding the same (at all Luciferase vector: VVN-52431 vector ratios). These results also demonstrate the ability of to test and compare the biological activity of PE-fusion proteins in inhibiting protein synthesis.

In addition to measuring inhibition of protein synthesis as a measure of light production catalyzed by Luciferase, quantitative analysis of inhibition of protein synthesis was also performed by separating polypeptide reaction products on SDS-PAGE gels, staining, and assessing amounts of polypeptide produced (data not shown).

Assays such as these may be used to compare the ability of amino acid substituted (e.g., deimmunized) forms of PE (alone or as fusion proteins) to retain biological activity (such as inhibition of protein synthesis) compared to corresponding non-amino acid substituted forms of PE (alone or as fusion proteins).

Example 6

In Vitro Transcription/Translation (IVTT) Assay to Measure and Compare Ribosylation Activity of Amino Acid Substituted Variants of PE

Purpose: This protocol provides an example of they type of methods which may be used to measure and compare the ribosylation activity (i.e., inhibition of protein synthesis) of amino acid substituted forms of PE compared to corresponding non-amino acid substituted forms of PE.

Background: The IVTT assay measures PE mediated inhibition of in vitro transcription/translation of a target plasmid, T7-Luc. The level of inhibition (or lack thereof) is

153

determined by chemiluminescent measurement of luciferase activity (i.e., the transcribed and translated protein). In this assay, a lowered level of transcription and translation (and thereby, lowered levels of chemiluminescent light output) corresponds to increased inhibition of protein synthesis. IVTT can be performed using template DNA encoding PE, or by directly using quantified protein. This assay may be used to rank different PE variants against each other and to compare their biological activities to corresponding non-amino acid substituted forms.

Materials: Test sample: Vectors comprising either circular plasmids with an SP6 promoter or linearized plasmids with a T7 promoter.

Reagents and Materials	Vendor	
Nuclease-free water (1000 ml) TNT SP6 Quick Coupled T/T system SP6 luciferase plasmid DNA (From	Ambion PROMEGA ® PROMEGA ®	_
same kit) RNase-free 1.5 ml microfuge tubes Dual Glo ® Luciferase Assay System	Ambion PROMEGA ®	20

Equipment:

Item	Vendor	
P20, P200, P1,000 96 well white plate Water bath (circulation) Luminometer	Rainin Costar	3
Microcentrifuge, refrigerated	Eppendorf	

Reagent Preparation:

Luciferase Preparation:

- 1. Thaw reagent Kit on ice or at 4 degrees C.
- 2. Transfer entire Dual-Glo® Luciferase Buffer into Dual-Glo® Luciferase Substrate bottle and shake bottle slightly to ensure substrate completely dissolved.
- 3. Transfer entire Dual-Glo® Stop & Glo® substrate into 40 Dual-Glo® Stop & Glo® buffer and mix well.
- 4. Aliquot rehydrated reagent into 15 ml centrifuge tube (10 ml/tube) and wrap tube with Aluminum foil.
- 5. Store rehydrated reagent in -80° C. Freezer (reagent is good for 6 months)

Procedure:

Per manufacturer's recommendations: Except for the actual transcription/translation incubation, all handling of TNTR Quick Master Mix should be done at 4° C. Any unused Master Mix should be refrozen as soon as possible 50 after thawing to minimize loss of translational activity. Do not freeze-thaw the Master Mix more than two times.

Plasmid DNA Dilution: Dilute plasmid DNA and Luc plasmid DNA in nuclease free water to final concentration of $0.1~\mu g/\mu l$.

IVTT Reactions

- 1. In 1.5 ml NF (nuclease free) eppendorf tubes, the following are combined for each test sample:
 - a. 5 μL of NF H₂O;
 - b. 2 μl, 0.1 μg/μl test plasmid (for increased accuracy of 60 results test a dilution series of samples);
 - c. 1 µl, 1 mM Methionine;
 - d. 40 µL TNT quick master mix;
 - e. Negative control (reaction mix only. NF water 9 μl, methionine 1 μl, reaction mixture 40 μl;
- 2. Incubate reaction mixes at 30° C. for 15 minutes in water bath;

154

- 3. Add 2 µl, 0.1 µg/µl Luc plasmid to each reaction mix;
- Incubate reactions at 30° C. for 90 minutes in water bath; and
- 5. Transfer all samples onto ice to stop reaction.

Luciferase Assay

- Transfer 5 μl of end product/well into 96-well white plates in triplicate;
- Dispense 100 μL of Luciferase Assay Reagent per well. Mix by pipetting 2-3×;
- 8. Read entire plate within 10 minutes.

Calculations

- Calculate percent inhibition based on relative luminescence units (RFU) of the test sample divided by the RFU of the LUC plasmid with no test sample, then subtract the result from 100.
- Calculate the percent of activity of non-amino acid substituted PE by percent inhibition of the test sample divided by the percent inhibition of non-amino acid substituted, then multiply the result by 100.
- 3. If a dilution series of samples is tested, calculate the IC50 (half maximal inhibition concentration) for each sample using the RFU of the test sample divided by the RFU of the LUC plasmid alone, then subtract the result from 100. Determine the concentration which results in 50% inhibition.
- 4. Calculate the percent of non-amino acid substituted PE inhibition by dividing the IC50 of the non-amino acid substituted PE by the IC50 of the test sample and multiplying the result by 100.

Example 7

Ex Vivo Assays to Assess Immunogenicity of Amino Acid Substituted Forms of PE (i.e. Deimmunized PE) Versus Corresponding Non-Amino Acid Substituted Forms

The immunogenicity of amino acid substituted forms of PE (alone or as PE-fusion proteins) are assessed using methods well-known and routinely used by those skilled in the art. For example, ELISA assays are used wherein serum is assayed ex vivo (following extraction from organisms in 45 which amino acid substituted forms of PE, or non-amino acid substituted PE, (alone or as fusion proteins) are administered) to determine whether or not antibodies that specifically bind the administered protein are produced. It is noted that in the case of PE-fusion proteins it is necessary to use, as the ELISA assay target antigen, not only intact PE-fusion proteins (i.e., amino acid substituted or non-amino acid substituted PE), but to also test the PE component and the polypeptide fusion component separately to determine whether or not antibodies produced specifically bind the PE portion or the fusion polypeptide portion (e.g., IL2 as used in a previous example of a PE-IL2 fusion protein). Accordingly, it is most desirable to identify amino acid substituted forms of PE which do not result in host production of antibodies that specifically bind modified forms of PE (i.e., deimmunized forms of PE).

Organisms in which amino acid substituted forms of PE may be administered (alone or as fusion proteins) include, for example, without limitation: mice (including transgenic mice expressing human immunoglobulin genes), rats, rabbits, dogs, goats, sheep, horses, cows (and other bovine species), non-human primates, and humans.

Example 8

In Vitro and In Vivo Assays to Assess Cytotoxicity of Amino Acid Substituted Forms of PE

The cytotoxicity of amino acid substituted forms of PE (alone or as PE-fusion proteins) are assessed using methods well-known and routinely used by those skilled in the art. For example, the cytotoxic effects of amino acid substituted forms of PE (alone or as PE-fusion proteins) administered to 10 cells in vitro or organisms in vivo, may be assessed with reference to cytotoxic (cell killing) effects on target cells, organs, tissues, or tumors against which PE or PE fusion proteins are expected to produce a cytotoxic effect. For example, the therapeutically beneficial cytotoxic effects of 15 amino acid substituted PE-Mesothelin fusions may be assessed by monitoring and measuring reduction or elimination of tumor or cancer cells or tissues (in vitro or in vivo) in response to administration of amino acid substituted forms of PE-Mesothelin versus wild-type PE-Mesothelin 20 fusion.

Organisms in which amino acid substituted forms of PE may be administered (alone or as fusion proteins) include, for example, without limitation: mice (including transgenic mice expressing human immunoglobulin genes), rats, rabbits, dogs, goats, sheep, horses, cows (and other bovine species), non-human primates, and humans.

Examples 9-13: Oligonucleotides Referenced in the Following Examples are Listed in Table 12.

Example 9

Generation of cDNAs Encoding Amino Acid Substituted Forms of PE

The Kozak sequence in vector pET14b (EMD Millipore catalog #69660, Darmstadt, Germany) was modified by introducing a linker made up of annealed oligonucleotides 5'-CATGGT

GGCTCTCCTTCTTAAAGTTAAACAAAATTATTT-3' (SEQ ID NO:239)(OL2216 in Table 12) and

5'-CTAGAAATAATTTTGTTTAACTT-'AAGAAGGAGAGCCAC-3' (SEO ID NO:240

TAAGAAGGAGAGCCAC-3' (SEQ ID NO:240)(OL2217 in Table 12) (underlined letters indicate nucleotides changed

156

in the Kozak sequence*) via NcoI and XbaI restriction sites into vector pET14b resulting in a modified Kozak sequence (SEQ ID NO:176) by mutation of three nucleotides at positions 587 to 589. The resulting vector was named pET14b-K.

*Kozak sequence=(gcc)gccRccAUGG (SEQ ID NO:286), where R is a purine (i.e., adenine or guanine) three bases upstream of the start codon (AUG), which is followed by another 'G'. See, Kozak, *Nucleic Acids Res.* 15 (20): 8125-8148 (1987).

Oligonucleotides for generation of genes encoding amino acid substituted forms of PE are listed as OL2164 to OL2194 and OL2281 to OL2366 in Table 12. A wild-type (WT) PE gene (SEQ ID NO:1) was made by gene synthesis and amplified using oligonucleotides: 5'-ATTGTCCATATGC-CAGAAGGCGGTAGCCTGGC-3' (SEQ ID NO:215) (OL2154 in Table 12) to introduce a Ndel site, and

5'-ATCCTCGAGTTACTTCAGGTCCTCACGCGGCG-3' (SEQ ID NO:222)(OL2167 in Table 12) to introduce a XhoI site. The resulting DNA fragment was subcloned into pGEMT®-T (PROMEGA® catalogue #A1360, PROMEGA®, Southampton, UK). Colonies were screened by PCR using M13 primers OL0001 and OL0002 (Table 12). Subsequently the wild-type (WT) PE gene was subcloned into pET14b-K using NdeI and XhoI restriction enzymes (Fermentas catalog #FD0583 and FD0695, respectively) and resulting in a gene encoding an N-terminal His6 tag fused to the WT PE sequence. The resulting vector was named pET14b-K-WT PE.

Oligonucleotides for generation of genes encoding amino acid substituted forms Genes encoding amino acid substituted forms of PE were generated using overlapping PCR with the WT PE gene in pET14b-K as template. Pairs of primers from the oligonucleotides of Table 12 (as noted in the "application" column of Table 12) were annealed to WT PE DNA and the amino acid substituted genes were PCR amplified using terminal oligonucleotides: 5'-ATCTC-CCTCTAGAAATAATTTTGTTTAACTTTAAGAAG-3' (SEQ ID NO:241)(OL2268 in Table 12) and

5'-ATCCTCGAGTTACTTCAGGTCCTCACGCGGCG-3' (SEQ ID NO:216)(OL2161 in Table 12). PCR fragments were and cloned into pET14b-K using XbaI and XhoI restriction sites.

TABLE 12

	Oligonucleotides						
Name		sequence	length	application			
OL	001	CGCCAGGGTTTTCCCAGTCAC GAC (SEQ ID NO: 205)	24	M13 FOR			
OL	002	AGCGGATAACAATTTCACACA GGA (SEQ ID NO: 206)	24	M13 REV			
OL	2043	GAAGTGCAGCTGGTGGAG (SEQ ID NO: 207)	18	RFB4 VH5' PCR primer sequence			
OL	2044	CAGAGCCACCTCCGCCTGAAC CGCCTCCACCTGAGGAGACA GTGACCAG (SEQ ID NO: 208)	49	RFB4 VH3' PCR primer sequence			
OL	2045	CAGGCGGAGGTGGCTCTGGC GGTGGCGGATCGGATATCCA GATGACCCAG (SEQ ID NO: 209)	50	RFB4 VK 5' PCR Primer Sequence			
OL	2046	TTTGATCTCCAGCTTGGTG (SEQ ID NO: 210)	19	RFB4 VK 3' PCR Primer sequence			

TABLE 12 -continued

	TABLE 12 -continued Oliqonucleotides											
Na	ame	sequence		application								
OL	2047	CCCAGCCGGCCATGGCGGAA GTGCAGCTGGTGGAG (SEQ ID NO: 211)	35	RFB4 Pull through Primer (FOR))								
OL	2048	GGTGCTCGAGTGCGGCCGCCC GTTTGATCTCCAGCTTGGTG (SEQ ID NO: 212)	41	RFB4 Pull through Primer (REV)								
OL	2097	AACCGCCCGGCCGTTCTTCTC CGTGTTGCCCGGAAAGCC (SEQ ID NO: 213)	39	IEX02 GroEL/ES REV								
OL	2098	GGGCCAAAGCTTGTTCTTGTT TGAGTCCACTCATGG (SEQ ID NO: 214)	36	IEX02 GroEL/ES FOR								
OL	2154	ATTGTCCATATGCCAGAAGGC GGTAGCCTGGC (SEQ ID NO: 215)	32	IEX02 PE38 FOR, introducing NdeI								
OL	2161	ATCCTCGAGTTACTTCAGGTC CTCACGCGGCG (SEQ ID NO: 216)	32	IEX02 PE38 REV, introducing XhoI								
OL	2162	GGGTGGTCGCCTGGACACTAT CCTGGGTTG (SEQ ID NO: 217)	30	IEX02 PE38 NM E229D FOR								
OL	2163	CAACCCAGGATAGTGTCCAG GCGACCACCC (SEQ ID NO: 218)	30	IEX02 PE38 NM E229D REV								
OL	2164	CAGTACGATAGAAACCCGGC AGATTGCTGCGCGGTACGTA (SEQ ID NO: 219)	40	IEX02 PE38 S253N								
OL	2165	CAGTACGATAGAAACCCGGC AGCTTGCTGCGCGGTACGTA (SEQ ID NO: 220)	40	IEX02 PE38 S253K								
OL	2166	CAGTACGATAGAAACCCGGC AGAGGGCTGCGCGGTACGTA (SEQ ID NO: 221)	40	IEX02 PE38 S253P								
OL	2167	CAGTACGATAGAAACCCGGC AGGGTGCTGCGCGGTACGTA (SEQ ID NO: 222)	40	IEX02 PE38 S253T								
OL	2168	GTACGTGCTCGTAGCAGAGAC CTGGATGCCATC (SEQ ID NO: 223)	33	IEX02 PE38 Q206R								
OL	2169	GATGGCATCCAGGTCTCTGCT ACGAGCACGTAC (SEQ ID NO: 224)	33	IEXO2 PE38 Q206R								
OL	2170	CGTAGCCAGGACCTGAAGGC CATCTGGCGTGGC (SEQ ID NO: 225)	33	IEX02 PE38 D209K								
OL	2171	GCCACGCCAGATGGCCTTCAG GTCCTGGCTACG (SEQ ID NO: 226)	33	IEX02 PE38 D209K								
OL	2183	GAAGCTGCTCAGTCTGCCGTG TTCGGTGGCGT (SEQ ID NO: 227)	32	IEX02 PE38I196A FOR, to pair with OL2161								
OL	2184	ACGCCACCGAACACGGCAGA CTGAGCAGCTTC (SEQ ID NO: 228)	32	IEX02 PE38I196A REV, to pair with OL2268								
OL	2185	GAAGCTGCTCAGTCTAACGTG TTCGGTGGCGT (SEQ ID NO: 229)	32	IEX02 PE38I196N FOR, to pair with OL2161								

TABLE 12 -continued

Oligonucleotides											
OL		sequence ACGCCACCGAACACGTTAGA CTGAGCAGCTTC (SEQ ID NO: 230)		application IEX02 PE38I196N REV, to pair with OL2268							
OL	2187	GGTGATGGCGGCGATGCCTCT TTTTCTACCCGC (SEQ ID NO: 231)	33	IEX02 to introduce I153A FOR							
OL	2188	GCGGGTAGAAAAAGAGGCAT CGCCGCCATCACC (SEQ ID NO: 232)	33	IEX02 to introduce I153A REV							
OL	2189	GGTGATGGCGGCGATACCTCT TTTTCTACCCGC (SEQ ID NO: 233)	33	IEX02 to introduce I153T FOR							
OL	2190	GC GGGTAGAAAAAGAGGTAT CGCCGCCATCACC (SEQ ID NO: 234)	33	IEX02 to introduce I153T REV							
OL	2191	GGTGATGGCGGCGATCACTCT TTTTCTACCCGC (SEQ ID NO: 235)	33	IEX02 to introduce I153H FOR							
OL	2192	GCGGGTAGAAAAAGAGTGAT CGCCGCCATCACC (SEQ ID NO: 236)	33	IEX02 to introduce I153H REV							
OL	2193	GCACCCAGAACTGGAGAGTT GAACGTCTGCTG (SEQ ID NO: 237)	32	IEX02 to introduce T164R FOR							
OL	2194	CAGCAGACGTTCAACTCTCCA GTTCTGGGTGC (SEQ ID NO: 238)	32	IEX02 to introduce T164R REV							
OL	2216	CATGGTGGCTCTCCTTCTTAA AGTTAAACAAAATTATTT (SEQ ID NO: 239)	39	IEXO2 Linker to optimize Kozak in pET14b, to anneal with OL2217							
OL	2217	CTAGAAATAATTTTGTTTAAC TTTAAGAAGGAGAGCCAC (SEQ ID NO: 240)	39	IEX02 Linker to optimize Kozak in pET14b, to anneal with OL2216							
OL	2268	ATCTCCCTCTAGAAATAATTT TGTTTAACTTTAAGAAG (SEQ ID NO: 241)	38	IEXO2 outside FOR spanns over XbaIsite (pET14b)-to be paired with OL2161							
OL	2279	GAAGCTGCTCAGTCTATCGTG TTCGGTGGCGT (SEQ ID NO: 242)	32	IEX02 FOR oligo to remove TM to be paired with OL2161							
OL	2280	ACGCCACCGAACACGATAGA CTGAGCAGCTTC (SEQ ID NO: 243)	32	IEX02 REV oligo to remove TM to be paired with OL2268							
OL	2281	CTCTGCTACGAGCACGGGCGC CACCGAACACG (SEQ ID NO: 244)	32	IEX02 A201 REV, ONLY for templates having Q206							
OL	2282	CGTGTTCGGTGGCGCCCCGTGC TCGTAGCAGAG (SEQ ID NO: 245)	32	IEX02 A201 FOR, ONLY for templates having Q206							
OL	2283	CATCCAGGTCTCTGCTGGCAG CACGTACGCCAC (SEQ ID NO: 246)	33	IEX02 A204 REV, ONLY for templates having Q206							
OL	2284	GTGGCGTACGTGCTGCCAGCA GAGACCTGGATG (SEQ ID NO: 247)	33	IEX02 A204 FOR, ONLY for templates having Q206							
OL	2285	CATCCAGGTCTCTGCTCTGAG CACGTACGCCAC (SEQ ID NO: 248)	33	IEX02 Q204 REV, ONLY for templates having Q206							

TABLE 12 -continued

	Oliqonucleotides											
N	ame	sequence	length	application								
OL	2286	GTGGCGTACGTGCTCAGAGCA GAGACCTGGATG (SEQ ID NO: 249)	33	IEX02 Q204 FOR, ONLY for templates having Q206								
OL	2287	CCAGTTCTGGGTGCCGGCGGT AGAAAAAGAG (SEQ ID NO: 250)	31	IEXO2 A158 REV								
OL	2288	CTCTTTTTCTACCGCCGGCAC CCAGAACTGG (SEQ ID NO: 251)	31	IEX02 A158 FOR								
OL	2289	CCAGTTCTGGGTGCCCTGGGT AGAAAAAGAGATATC (SEQ ID NO: 252)	36	IEX02 Q158 REV								
OL	2290	GATATCTCTTTTTCTACCCAG GGCACCCAGAACTGG (SEQ ID NO: 253)	36	IEX02 Q158 FOR								
OL	2291	GTCCAGTTCTGGGTGGAGCGG GTAGAAAAAGAGATATC (SEQ ID NO: 254)	38	IEX02 5159 REV								
OL	2292	GATATCTCTTTTTCTACCCGCT CCACCCAGAACTGGAC (SEQ ID NO: 255)	38	IEX02 5159 FOR								
OL	2293	ACCACCCAGAACTGGACCGTT GAAC (SEQ ID NO: 256)	25	IEX02 T159 REV								
OL	2294	CCAGTTCTGGGTGGTGCGGGT AGAAAAAGAG (SEQ ID NO: 257)	31	IEX02 T159 FOR								
OL	2295	GAGCTTGGGTCCAGATCGCCA CC (SEQ ID NO: 258)	23	IEX02 generic REV oligo for mutations at 333								
OL	2296	CTGGACCCAAGCTCTGCCCCG GATAAAGAAC (SEQ ID NO: 259)	31	IEX02 A333 FOR								
OL	2297	CTGGACCCAAGCTCTAACCCG GATAAAG (SEQ ID NO: 260)	28	IEXO2 N333 FOR								
OL	2298	CTGGACCCAAGCTCTACCCCG GATAAAG (SEQ ID NO: 261)	28	IEX02 T333 FOR								
OL	2299	CTGGACCCAAGCTCTCAGCCG GATAAAGAAC (SEQ ID NO: 262)	31	IEX02 Q333 FOR								
OL	2300	CTGGACCCAAGCTCTCACCCG GATAAAG (SEQ ID NO: 263)	28	IEX02 H333 FOR								
OL	2301	CTGGACCCAAGCTCTATCCCG GATAAAGAAAACGCTATTTCT GCCCTG (SEQ ID NO: 264)	48	IEX02 N338 FOR								
OL	2302	CTGGACCCAAGCTCTATCCCG GATAAAGAAGAGGCTATTTCT GCCC (SEQ ID NO: 265)	46	IEX02 E338 FOR								
OL	2303	CTGGCTACGAGCACGGGCGC CACCGAAC (SEQ ID NO: 266)	28	IEXO2 V201A REV								
OL	2304	GTTCGGTGGCGCCCGTGCTCG TAGCCAG (SEQ ID NO: 267)	28	IEXO2 V201A FOR								
OL	2305	CTTCAGGTCCTGGCTGGCAGC ACGTACGCC (SEQ ID NO: 268)	30	IEX02 R204A REV, ONLY for templates having D209K								
OL	2306	GGCGTACGTGCTGCCAGCCAG GACCTGAAG (SEQ ID NO: 269)	30	IEX02 R204A FOR, ONLY for templates having D209K								

TABLE 12 -continued

	Oliqonucleotides										
N	ame	sequence	length	application							
OL	2307	CTTCAGGTCCTGGCTCTGAGC ACGTACGC (SEQ ID NO: 270)	29	IEX02 R204Q REV, ONLY for templates having D209K							
OL	2308	GCGTACGTGCTCAGAGCCAG GACCTGAAG (SEQ ID NO: 271)	29	IEX02 R204Q FOR, ONLY for templates having D209K							
OL	2309	GTTCAACGGTCCAGTTGTTGG TGCCGCGGGTAG (SEQ ID NO: 272)	33	IEXO2 Q161N REV							
OL	2310	CTACCCGCGGCACCAACAACT GGACCGTTGAAC (SEQ ID NO: 273)	33	IEXO2 Q161N FOR							
OL	2311	GTTCAACGGTCCAGTTGGTGG TGCCGCGGGTAG (SEQ ID NO: 274)	33	IEXO2 Q161T REV							
OL	2312	CTACCCGCGGCACCACCT GGACCGTTGAAC (SEQ ID NO: 275)	33	IEX02 Q161T FOR							
OL	2313	CAGCAGACGTTCAACGGCCC AGTTCTGGGTG (SEQ ID NO: 276)	31	IEXO2 T164A REV							
OL	2314	CACCCAGAACTGGGCCGTTGA ACGTCTGCTG (SEQ ID NO: 277)	31	IEX02 T164A FOR							
OL	2315	GACGTTCAACGGTCCAGGCCT GGGTGCCGCGGG (SEQ ID NO: 278)	33	IEXO2 N162A REV							
OL	2316	CCCGCGGCACCCAGGCCTGG ACCGTTGAACGTC (SEQ ID NO: 279)	33	IEX02 N162A FOR							
OL	2318	ATTGCCACCATGGCGGAAGTG C (SEQ ID NO: 280)	22	IEX02 FOR RFB4 (NcoI)							
OL	2320	CACCAGGCCGCTGCTTTTGAT CTCCAGCTTG (SEQ ID NO: 281)	31	IEX02 REV to create RBF4 for RFB4-PE38-8xHis to pair with OL2318							
OL	2321	CAAGCTGGAGATCAAAAGCA GCGGCCTGGTG (SEQ ID NO: 282)	31	IEXO2 FOR to create RFB4-PE38-8xHis to pair with OL2322							
OL	2322	CGATTCTCGAGTTACTTCAGG TCC TC GTGGTGGTGGTGATGA TGATGATGACGCGGCGGTTTA CCC (SEQ ID NO: 283)	66	IEX02 REV introducing 8xHis C-terminus of PE, introducing XhoI							
OL	2323	CAAGCTGGAGATCAAAGCTC ATGGGGGCAGCCATCATCATC ATC (SEQ ID NO: 284)	44	IEX02 FOR to create RFB4-6xHis PE38 fusions (pIEX02-302 and pIEX02-304) to pair with OL2161							
OL	2324	GATGATGATGATGCCCCC CATGAGCTTTGATCTCCAGCT TG (SEQ ID NO: 285)	44	IEX02 REV to create RFB4-6xHis PE38 fusions (pIEX02-302 and pIEX02-304) to pair with OL2318							

Example 10

Analysis of Genes Encoding Amino Acid Substituted Forms of PE by an In Vitro Transcription/Translation (IVTT) Assay

The cell-free in vitro transcription/translation (IVTT) assay was performed with a TnT® T7 Coupled Reticulocyte

- Lysate System (PROMEGA® catalog #L4610) following the procedure described in the User's Manual provided in the kit. See, PROMEGA®, Technical Bulletin #TB 126, Revised 12/10, pp. 1-28 (2010) which is incorporated by reference herein.
- WT PE in plasmid pET14b-K was used as standard on every plate and tested at concentrations ranging from 0.08 ng to 10 ng in a 12.5 microliter final volume reaction. All test

samples were run in triplicate. DNAs encoding WT or amino acid substituted PE in plasmid pET14b-K were added to the IVTT reaction mix supplemented with NAD+ (final concentration 0.15 mM; Fisher Scientific catalog #BPE9746-212) and incubated at 30° C. for 15 min. Following a subsequent 5 cooling step at 4° C. for 5 min, 250 ng of T7 Luciferase plasmid (Luciferase T7 control DNA supplied in the TnT® T7 Coupled Reticulocyte Lysate System) was added to each reaction and incubated at 30° C. for 90 min. The reaction was stopped by placing the samples on ice. Samples were 10 analyzed using the STEADY-GLO® Luciferase Assay (PROMEGA® catalog #E2510) according to the protocol provided by the manufacturer. See, PROMEGA®, Technical Bulletin #TM051, revised 9/11, pp. 1-23 (2011) which is incorporated by reference herein. Luminescence was measured in a FLUOstar OPTIMA plate reader (BMG Labtech Ltd., Aylesbury, UK)

A representative result is shown in FIG. 10 which shows the results expressed in CPS (counts per second as read from the FLUOstar OPTIMA fluorescence plate reader) for 20 luciferase activity from IVTT assays of genes encoding either WT PE (pIEX02-001 (SEQ ID NO:1)) or encoding amino acid substituted PE (pIEX02-228 (SEQ ID NO:177), pIEX02-244 (SEQ ID NO:178), pIEX02-246 (SEQ ID NO:179)); which were expressed as fusion proteins com- 25 prising a histidine polymer and a linker sequence preceding a sequence of WT PE or amino acid substituted PE; see, pIEX02-001 PE WT (SEQ ID NO:189 (DNA) and SEQ ID NO:190 (AA)), pIEX02-228 amino acid substituted PE (SEQ ID NO:193 (DNA) and SEQ ID NO:194 (AA)), 30 pIEX02-244 amino acid substituted PE (SEQ ID NO:197 (DNA) and SEQ ID NO:198 (AA)), pIEX02-246 amino acid substituted PE (SEQ ID NO:201 (DNA) and SEQ ID NO:202 (AA)). See also, Table 13.

For the analysis of various amino acid substituted PEs, the 35 potency of each mutated PE in inhibiting IVTT was expressed as relative inhibition exhibited via expression from 2.5 nanograms of DNA encoding amino acid substituted PE compared to expression from 2.5 nanograms WT PE DNA as shown in Table 13 (data expressed as % 40 inhibition of IVTT for the DNA encoding amino acid substituted PE compared to wild-type PE). In order to identify "inhibitory" amino acid substituted PE polypeptides (i.e., genes encoding amino acid substituted forms of PE which inhibit IVTT), selected mutations in each T cell 45 epitope as identified in Table 11 were initially tested using various combinations of epitope 5 mutations (e.g., corresponding to S241N, S241K, S241P and S241T in SEQ ID NO:1) along with mutations in either: epitope 4; epitopes 4 and 3; epitopes 4 and 1; epitopes 4 and 2; or, epitopes 4 and 50 6 (see, Table 13). For all combinations except those including amino acid substitutions in epitope 3 at 1184 (SEQ ID NO:1; or, 1196 in SEQ ID NO:2) (which produced 0% inhibition), one or more inhibitory PE polypeptides were identified (Table 13). (Note: "Inhibitory PE polypeptides" indicates amino acid substituted forms of PE which exhibit PE biological activity in the inhibition of IVTT). From structural analysis of PE, it was noted that residue 1184 (SEQ ID NO:1; or, 1196 in SEQ ID NO:2) (anchor residue 1, Table 11) was located within the active enzymatic site of 60 PE. In view of this result, alternative mutations distal to the active site were sought at anchor residues 6 and 9 (V189 and R192 in SEQ ID NO:1; or, V201 and R204 in SEQ ID NO:2). Alternative epitope 3 mutations at V189 and R192 in SEQ ID NO:1 were tested in combination with other epitope mutations. These mutations confirmed that inhibitory PE polypeptides with epitope 3 mutations could also be gener166

ated (Table 13, pIEX02-173 to -248). A range of combinations of DNAs encoding multiple amino acid substituted forms of PE were tested progressively leading to a final analysis of mutations in four of six, five of six, and six of six identified immunogenic epitopes. See, Table 13, "Quadruplicates", "Quintuplicates" and "Sextuplicates". In this regard, quadruplicate epitope mutations were identified which exhibited IVTT inhibitory activity ranging from 0% to about 70%. Quintuplicate mutations were identified that exhibited IVTT inhibitory activity ranging from about 5% to about 35%. Sextuplicate mutations were identified that exhibited IVTT inhibitory activity ranging from about 5% to about 20%. It is also noted that multiple single, double, and triple epitope mutations also resulted in amino acid substituted forms of PE exhibiting PE biological activity in the inhibition of IVTT such that the percent (%) inhibitory activity ranged from 0% to 100% (or about 100%); see Table

Three different "candidates" (i.e., amino acid substituted forms of PE or DNA constructs encoding the same) were selected for use as examples in performing subsequent experiments described further herein. In particular, additional experiments were performed using the sextuplicate AA substituted candidate pIEX02-244 (SEQ ID NO:178; see also, Table 13); which retained approximately 20% of the WT PE inhibitory activity. Likewise, additional experiments were also performed using the sextuplicate AA substituted candidate pIEX02-246 (SEQ ID NO: 179; see also, Table 13) which retained approximately 8% of the WT PE inhibitory activity; and using the quintuplicate AA substituted candidate pIEX02-228 (SEQ ID NO: 177; see also, Table 13) which retained approximately 36% of the WT PE inhibitory activity. These were expressed as fusion proteins comprising a histidine polymer and a linker sequence preceding a sequence of WT PE or amino acid substituted PE; see, pIEX02-001 PE WT (SEO ID NO:189 (DNA) and SEO ID NO:190 (AA)), pIEX02-228 amino acid substituted PE (SEQ ID NO:193 (DNA) and SEQ ID NO:194 (AA)), pIEX02-244 amino acid substituted PE (SEQ ID NO:197 (DNA) and SEQ ID NO:198 (AA)), pIEX02-246 amino acid substituted PE (SEQ ID NO:201 (DNA) and SEQ ID NO:202 (AA)). These AA substituted PE polypeptides, and DNA constructs encoding, them may be referenced herein as "228", "244" or "246" using simply these three numbers, or using these numbers and a prefix or suffix included there-

Moreover, it is noted that in view of the highly cytotoxic nature of wild-type PE, IVTT inhibition activity (i.e., cytotoxicity) as low as about 5% (or higher) of WT (e.g., 8%, 20%, and 36%) in amino acid substituted forms of PE may provide a therapeutically effective polypeptide. See, for example, Thomas et al., "Abrogation of Head and Neck Squamous Cell Carcinoma Growth by Epidermal Growth Factor Receptor Ligand Fused to Pseudomonas Exotoxin Transforming Growth Factor α-PE38," Clin. Cancer Res. 10:7079-7087 (2004); Siegall et al., "Cell-specific toxicity of a chimeric protein composed of interleukin-6 and Pseudomonas exotoxin (IL6-PE40) on tumor cells", Mol. Cell. Biol. 10(6); 2443-2447 (1990); and, Weldon & Pastan, "A Guide to Taming a Toxin—Recombinant Immunotoxins Constructed From Pseudomonas Exotoxin A for the Treatment of Cancer", FEBS Journal 278(23):4683-4700 (2011).

TABLE 13

E:	xamples of	Amino Acid	d Substituted	Forms of P	E and Assoc	ciated Cell C	cytotoxic Act	ivity.
Epitopes changed	pIEX02 - ###	Epitope 5	Epitope 4	Epitope 3	Epitope 1	Epitope 2	Epitope 6	% Inhibitio of IVTT
				Wild-Type (WT)			
	001							100.00
	(WT)		S	ingle Substit	utions			
5	003	S241N						100.00
		[S253N]						
5	004	S241K [S253K]						100.00
5	005	S241P						99.71
5	006	[S253P] S241T						99.99
		[S253T]	D	ouble Substi	tutions			
4, 5	007	S241N	Q194R					41.63
		[S253N]	[Q206R]					
4, 5	008	S241K [S253K]	Q194R [Q206R]					69.51
4, 5	009	S241P	Q194R					20.58
4, 5	010	[S253P] S241T	[Q206R] Q194R					21.44
4, 5	011	[S253T] S241N	[Q206R] D197K					99.88
		[S253N]	[D209K]					
4, 5	012	S241K [S253K]	D197K [D209K]					42.49
4, 5	013	S241P [S253P]	D197K [D209K]					74.87
4, 5	014	S241T	D197K					98.84
		[S253T]	[D209K] T	riple Substit	utions			
3, 4, 5	015	S241N	Q194R	I184A				0.00
		[S253N]	[Q206R]	[I196A]				
3, 4, 5	016	S241K [S253K]	Q194R [Q206R]	I184A [I196A]				0.00
3, 4, 5	017	S241P [S253P]	Q194R [Q206R]	I184A [I196A]				0.00
3, 4, 5	018	S241T	Q194R	I184A				0.00
3, 4, 5	019	[S253T] S241N	[Q206R] Q194R	[I196A] I184N				0.00
		[S253N]	[Q206R]	[I196N] I184N				
3, 4, 5	020	S241K [S253K]	Q194R [Q206R]	[I196N]				0.00
3, 4, 5	021	S241P [S253P]	Q194R [Q206R]	I184N [I196N]				0.00
3, 4, 5	022	S241T	Q194R	I184N				0.00
3, 4, 5	024	[S253T] S241K	[Q206R] D197K	[I196N] I184A				0.00
3, 4, 5	027	[S253K] S241N	[D209K] D197K	[I196A] I184N				0.00
		[S253N]	[D209K]	[I196N]				
3, 4, 5	028	S241K [S253K]	D197K [D209K]	I184N [I196N]				0.00
3, 4, 5	029	S241P	D197K	I184N				0.00
3, 4, 5	030	[S253P] S241T	[D209K] D197K	[I196N] I184N				0.00
1 4 5	127	[S253T] S241T	[D209K]	[I196N]	T1 / 1 A			15 50
1, 4, 5	127	[S253T]	Q194R [Q206R]		I141A [I153A]			15.58
1, 4, 5	128	S241T	Q194R		I141T			14.16
1, 4, 5	129	[S253T] S241T	[Q206R] Q194R		[I153T] I141H			56.73
1, 4, 5	130	[S253T] S241T	[Q206R] D197K		[I153H] I141H			20.46
		[S253T]	[D209K]		[I153H]			
1, 4, 5	131	S241T [S253T]	D197K [D209K]		I141T [I153T]			86.84
1, 4, 5	132	S241T	D197K		I141A			88.15
1, 4, 5	139	[S253T] S241T	[D209K] D197K		[I153A] R146Q			21.81
1, 1, 2	137	[S253T]	[D209K]		[R158Q]			21.01

TABLE 13-continued

E	xamples of	Amino Acid		Forms of P		iated Cell C	ytotoxic Acti	vity.
Epitopes changed	pIEX02 - ###	- Epitope 5	Epitope 4	Epitope 3	Epitope 1	Epitope 2	Epitope 6	% Inhibition of IVTT
1, 4, 5	140	S241T [S253T]	D197K [D209K]		G147S [G159S]			42.81
1, 4, 5	143	S241T	D197K		Q149T			49.33
1, 4, 5	170	[S253T] S241T	[D209K] Q194R		[Q161T] R146A			39.74
1, 4, 5	171	[S253T] S241T	[Q206R] Q194R		[R158A] R146Q			6.01
1, 4, 5	172	[S253T] S241T	[Q206R] Q194R		[R158Q] G147S			1.49
2, 4, 5	144	[S253T] S241T	[Q206R] D197K		[G159S]	T152A		100.67
2, 4, 5	145	[S253T] S241T	[D209K] D197K			[T164A] N150A		70.69
2, 4, 5	133	[S253T] S241T	[D209K] Q194R			[N162A] T152R		17.46
2, 4, 5	134	[S253T] S241T	[Q206R] D107K			[T164R] T152R		23.78
6, 4, 5	146	[S253T] S241T	[D209K] D197K			[T164R]	I321A	104.47
6, 4, 5	147	[S253T] S241T	[D209K] D197K				[I333A] I321N	99.97
6, 4, 5	148	[S253T] S241T	[D209K] D197K				[I333N] I321T	53.19
6, 4, 5	149	[S253T] S241T	[D209K] D197K				[I333T] I321Q	99.91
6, 4, 5	150	[S253T] S241T	[D209K] D197K				[I333Q] I321H	89.43
6, 4, 5	152	[S253T] S241T	[D209K D197K				[I333H] Q326E	99.97
3, 4, 5	173	[S253T] S241T	[D209K] Q194R	R192A			[Q338E]	23.15
3, 4, 5	174	[S253T] S241T	[Q206R] Q194R	[R204A] R192Q				16.37
3, 4, 5	175	[S253T] S241T	[Q206R] Q194R	[R204Q] V189A				6.50
		[S253T]	[Q206R] Quad	[V201A] ruplicate Sul	ostitutions			
1, 2, 4, 5	156	S241N	Q194R		I141T	T152R		6.16
1, 2, 4, 5	166	[S253N] S241N	[Q206R] D197K		[I153T] I141A	[T164R] T152R		7.90
1, 3, 4, 5	105	[S253N] S241N	[D209K] D197K	I184A	[I153A] I141A	[T164R]		0.00
1, 3, 4, 5	106	[S253N] S241K	[D209K] D197K	[I196A] I184A	[I153A] I141A			0.00
1, 3, 4, 5	110	[S253K] S241K	[D209K] D197K	[I196A] I184A	[I153A] I141T			0.00
1, 3, 4, 5	111	[S253K] S241P	[D209K] D197K	[I196A] I184A	[I153T] I141T			0.00
1, 3, 4, 5	112	[S253P] S241T	[D209K] D197K	[I196A] I184A	[I153T] I141T			0.00
1, 3, 4, 5	114	[S253T] S241K	[D209K] D197K	[I196A) I184A	[I153T] I141H			0.00
1, 3, 4, 5	115	[S253K] S241P	[D209K] D197K	[I196A] I184A	[I153H] I141H			0.00
1, 3, 4, 5	117	[S253P] S241N	[D209K] D197K	[I196A] I184N	[I153H] I141A			0.00
1, 3, 4, 5	118	[S253N] S241K	[D209K D197K	[I196N] I184N	[I153A] I141A			0.00
1, 3, 4, 5	120	[S253K] S241T	[D209K] D197K	[I196N] I184N	[I153A] I141A			0.00
1, 3, 4, 5	121	[S253T] S241N	[D209K] D197K	[I196N] I184N	[I153A] I141T			0.00
1, 3, 4, 5	122	[S253N] S241K	[D209K] D197K	[I196N] I184N	[I153T] I141T			0.00
1, 3, 4, 5	123	[S253K] S241P	[D209K] D197K	[I196N] I184N	[I153T] I141T			0.00
1, 3, 4, 5		[S253P]	[D209K]	[I196N]	[I153T]			0.00
	124	S241T [S253T]	D197K [D209K]	I184N [I196N]	I141T [I153T]			
1, 3, 4, 5	125	S241N [S253N]	D197K [D209K]	I184N [I196N]	I141H [I153H]	m		0.00
2, 3, 4, 5	179	S241T [S253T]	Q194R [Q206R]	V189A [V201A]		T152R [T164R]		13.37

TABLE 13-continued

Ex	amples of	Amino Acid	d Substituted	Forms of P	E and Assoc	iated Cell C	ytotoxic Acti	vity.
Epitopes changed	pIEX02 -	Epitope 5	Epitope 4	Epitope 3	Epitope 1	Epitope 2	Epitope 6	% Inhibition of IVTT
2, 3, 4, 5	180	S241T	Q194R [Q206R]	R192A		T152R		58.9
2, 3, 4, 5	181			[R204A] R192Q [R204Q]		[T164R] T152R [T164R]		13.70
1, 3, 4, 5	183	[S253T] S241T [S253T]	[Q206R] D197K [D209K]	R192A [R204A]	I141A [I153A]	[1104K]		36.87
1, 3, 4, 5	188	S241T [S253T]	D197K [D209K]	R192A [R204A]	[1153A] [1141T [1153T]			20.75
1, 2, 4, 5	195	S241T [S253T]	D197K [D209K]	[1000 111]	I141T [I153T]	T152A [T164A]		42.90
1, 4, 5, 6	200	S241T [S253T]	D197K [D209K]		I141T [I153T]	[I321A [I333A]	22.04
1, 4, 5, 6	201	S241T [S253T]	D197K [D209K]		I141T [I153T]		I321N [I333N]	58.30
1, 4, 5, 6	204	S241T [S253T	D197K (D209K		I141T [I153T]		I321H [I333H]	12.76
1, 2, 4, 5	208	S241T [S253T]	D197K [D209K]		I141A [I153A]	T152A [T164A]	-	49.49
1, 4, 5, 6	213	S241T [S253T]	D197K [D209K]		I141A [I153A]		I321A [I333A]	18.03
1, 4, 5, 6	214	S241T [S253T]	D197K [D209K]		I141A [I153A]		I321N [I333N]	0.18
1, 4, 5, 6	215	S241T [S253T]	D197K [D209K]		I141A [I153A]		I321T [I333T]	5.87
1, 4, 5, 6	216	S241T [S253T]	D197K [D209K]		I141A [I153A]		I321Q [I333Q]	20.21
1, 4, 5, 6	217	S241T [S253T]	D197K [D209K]		I141A [I153A]		I321H [I333H]	11.22
1, 4, 5, 6	219	S241T [S253T]	D197K [D209K]		I141A [I153A]		Q326E [Q338E]	70.65
			Quint	uplicate Sub	stitutions			
	222	S241T [S253T]	D197K [D209K]		G147S [G159S]	T152A [T164A]	Q326E [Q338E]	4.87
	224	S241T	D197K		Q149T	T152A	Q326E	3.69
	226	[S253T] S241T	[D209K] D197K		[Q161T] I141A	[T164A] N150A	[Q338E] Q326E	11.23
	220	[S253T]	[D209K]		[I153A]	[N162A]	[Q338E]	11.23
1, 2, 4, 5, 6	228	S241T [S253T]	D197K [D209K]		I141A [I153A]	T152R [T164R]	Q326E [Q338E]	36.27
1, 2, 4, 5, 6	229	S241T [S253T]	D197K [D209K]		I141A [I153A]	T152A [T164A]	Q326E [Q338E]	18.11
1, 2, 3, 4, 5	221	S241T [S253T]	Q194R [Q206R]	R192A [R204A]	I141A [I153A]	T152R [T164R]	[()	4.79
1, 2, 4, 5, 6	242	S241T [S253T]	D197K [D209K]	[1000 111]	I141T [I153T]	T152A [T164A]	Q326E [Q338E]	21.64
		[]		uplicate Sub		[[(]	
1-6	244	S241T [S253T]	D197K [D209K]	R192A [R204A]	I141T	T152A	Q326E	20.53
1-6	246	S241T	D197K	R192A	[I153T] I141A	[T164A] T152A	[Q338E] Q326E	7.95
1-6	248	[S253T] S241T [S253T]	[D209K] D197K [D209K]	[R204A] R192A [R204A]	[I153A] I141A [I153A]	[T164A] T152R [T164R]	[Q338E] Q326E [Q338E]	4.45
		[]	[[[]	[220.26]	[4]	

Note

Non-bracketed amino acid substitution positions correspond to the PE polypeptide sequence in SEQ ID NO: 1. Bracketed [amino acid substitution positions] correspond to the PE polypeptide sequence in SEQ ID NO: 2 (comprising an N-terminal 12-amino acid linker).

Example 11

Ex Vivo Human T Cell Assay to Assess Immunogenicity of Wild-Type (WT) and Amino Acid Substituted PE

Ex vivo human T cell assays (EPISCREEN™; see e.g., preceding Examples) were performed to assess the immunogenicity of whole proteins corresponding to pIEX02-244 (SEQ ID NO:178) pIEX02-246 (SEQ ID NO:179) and pIEX02-228 (SEQ ID NO:177) (Example 10). In order to 65 avoid direct cytotoxicity to cells used in the assay, "null mutants" were generated for the three candidates and WT PE

by overlapping PCR as in Example 9 using primers OL2162 and 2163 (Table 12) to introduce an amino acid substitution of E287D in the three candidates and WT PE (to give SEQ ID NOs: 180 to 183). (Note: "Null mutants" is intended to indicate mutated forms of PE which lack cell cytotoxic biological activity; the amino acid substitution used to generate null mutants corresponds to a change of E287D in SEQ ID NO:1 or E299 in SEQ ID NO:2.) The E287D (SEQ ID NOs: 180 to 183) encoding genes were cloned into pET14b-K as in Example 9. WT PE sequence is shown in SEQ ID NO:181; pIEX02-244 sequence is shown in SEQ ID NO:182; and, pIEX02-246 sequence is shown in SEQ ID NO:182; and, pIEX02-246 sequence is shown in SEQ ID

NO:183. These were expressed as fusion proteins comprising a histidine polymer and a linker sequence preceding a "null mutant" sequence of WT PE or amino acid substituted PE; see, pIEX02-001 PE WT null mutant (SEQ ID NO:191 (DNA) and SEQ ID NO:192 (AA)), pIEX02-228 null 5 mutant (SEQ ID NO: 195 (DNA) and SEQ ID NO:196 (AA)), pIEX02-244 null mutant (SEQ ID NO:199 (DNA) and SEQ ID NO:200 (AA)), pIEX02-246 null mutant (SEQ ID NO:203 (DNA) and SEQ ID NO:204 (AA)).

The host cell for expression of the PE E287D genes was 10 an Escherichia coli BL21 derivative strain called SHuffle™ T7 Express (NEB catalog #C3029H, New England Biolabs UK Ltd., Knowl Piece, UK) which was altered to overexpress the chaperonins GroEL/ES by amplification of the GroEL/ES operon, including its promoter/regulatory sites, 15 from E. coli DH5alpha[™] (Invitrogen catalog #18265-017, Life Technologies Ltd., Paisley, UK) using OL2097 (introducing EagI site) and OL2098, introducing HindIII site (Table 12). The resulting PCR fragment was subcloned into pACYC184 (NEB catalog #E4152S) which was then trans- 20 formed into SHuffleTM T7 with selection for chloramphenicol resistance. The PE E287D (SEQ ID NOs: 180 to 183) genes in pET14b-K were transformed into the SHuffle™ T7/GroEL/ES strain with selection for ampicillin resistance. Single colonies were grown in 2×YT medium (Sigma- 25 Aldrich catalog #Y2627-1KG) and protein expression was induced at OD_{600nm} 1.0 by adding isopropyl-β-D-thio-galactoside (IPTG) to a final concentration of 0.4 mM. Cultures were then grown at 16 degrees C. for 17 h before harvesting by centrifugation. Cell pellets were resuspended in 35 ml of binding buffer (50 mM Tris pH 8.0, 500 mM NaCl and 10 mM imidazole) supplemented with protease inhibitors (cOmplete protease inhibitor tablets, Roche catalog #11873580001, Roche Diagnostics Ltd., Burgess Hill, UK (mixture of several protease inhibitors for inhibition of 35 days at 37° C. with 5% CO₂. serine and cysteine proteases)). Cells were lysed by sonication (SONICATOR®, Misonix catalog #XL2020, Misonix Inc., Farmingdale, N.Y.), and cell debris and insoluble material removed by centrifugation. Proteins were purified from the soluble fraction by nickel chelate affinity chroma- 40 tography using HISTRAP® FF Crude columns (GE Healthcare catalog #11-004-58, GE Healthcare Life Sciences, Little Chalfont, UK). After loading, the columns were washed with 50 mM Tris (pH 8.0) containing 500 mM NaCl and 20 mM imidazole and bound protein was eluted with 50 45 mM Tris (pH 8.0) containing 500 mM NaCl and 500 mM imidazole. Following buffer exchange to 20 mM Tris (pH 8.0) using Zeba Spin desalting columns (7K MWCO, Pierce catalog #89893), a negative purification step was employed using anion exchange chromatography on Q-Sepharose (1 50 ml, HISTRAP® Q FF column (GE Healthcare catalog #17-5053-01) with 20 mM Tris pH 8.0 and an NaCl gradient form 0 M to 1.5 M. For each protein, the column flow through was concentrated using an AMICON® Ultra centrifugal filter (EMD Millipore catalog #UFC 800 396, EMD 55 Millipore, Feltham, UK) and further purified by size-exclusion chromatography (120 ml, HiLoad 16/60 SUPERDEX® 75 pg (GE Healthcare catalog #28-9893-33)) using 1×PBS pH 7.4 (PAA catalog #H15-002, PAA Laboratories Ltd, Yeovil, UK). For each protein, the protein peak was col- 60 lected and concentrated.

Endotoxin levels were determined using an ENDOS-AFE®-PTS™ Portable Test System reader (Charles River Laboratories Inc., Wilmington, Mass.) with ENDOSAFE® Licensed PTS Endotoxin cartridges (Charles River catalog 65 #PTS20F). Endotoxins were reduced to a value below 5 endotoxin units (EU)/mg by repeatedly performing a phase

174

separation using TritonX-114, (Aida Y. and Pabst M. J., Journal of Immunological Methods, 132 (1990) 191-195). Triton X-114 was removed using PIERCE® Detergent Removal Spin Columns according to the manufacturer's provided protocol (PIERCE® catalog #87779; Thermo Fisher Scientific/PIERCE® Biotechnology, Rockford, Ill.; see, Thermo Scientific Instructions manual #2164.3). Protein concentration was quantified by absorbance at 280 nm using a BIOMATETM 3 UV-Visible spectrophotometer (Thermo Fisher Scientific) and a conversion factor of OD_{280} 1.0=1.15 mg/ml derived from the calculated molar extinction coefficient of 6×His PE (Pace C. N. et al. Protein Science 1995 4:2411-2423).

Ex vivo human T cell assays (EPISCREEN®) were performed using PBMC isolated from healthy community donor buffy coats as in Example 2. A cohort of 20 donors was selected to best represent the number and frequency of HLA-DR allotypes expressed in the world population. The haplotypes of the 20 donors in the assay is shown in Table 14. PBMCs from each donor were thawed, counted and viability assessed. Cells were revived in room temperature AIM-V® culture medium (INVITROGEN®, Paisley, UK), washed and resuspended in AIM-V® to 4-6×10⁶ PBMC/ml. For each donor, 1 ml of cells were dispensed into multiple wells of a 24 well plate. 0.5 ml of proteins were added at 50 micrograms/ml per sample together with 0.5 ml of AIM-V® culture medium. For each donor, a reproducibility control (cells incubated with 100 micrograms/ml keyhole limpet hemocyanin (KLH), an "intermediate" positive control (expected to give 20-30% T cell responses) of humanized A33 antibody (Welt et al. Clinical Cancer Research, 9 (2003) p1338-1343)(cells were incubated with 50 micrograms/ml humanized A33), and a culture medium only control well were also included. Cultures were incubated for a total of 8

TABLE 14

Donor Haplotypes									
Donor		KLH							
No	Haplotype	Test 1	IEX02						
1	DRB1*01, DRB1*11; DRB3*	1.95	5.41						
2	DRB1*11, DRB1*15; DRB3*; DRB5*	N/D	8.39						
3	DRB1*04, DRB1*11; DRB3*; DRB4*	6.04	4.58						
4	DRB1*08, DRB1*14; DRB3*	1.78	1.35						
5	DRB1*07, DRB1*13; DRB3*; DRB4*	5.57	6.77						
6	DRB1*04; DRB4*	12.36	11.25						
7	DRB1*03, DRB1*04; DRB3*; DRB4*	1.48	1.12						
8	DRB1*03, DRB1*13; DRB3*	2.73	1.63						
9	DRB1*03, DRB1*07; DRB3*; DRB4*	3.59	3.07						
10	DRB1*04, DRB1*12; DRB3*; DRB4*	3.35	3.26						
11	DRB1*01, DRB1*07	13.67	15.34						
12	DRB1*01, DRB1*14; DRB3*	6.05	50.13						
13	DRB1*07, DRB1*09; DRB4*	9.17	19.32						
14	DRB1*15; DRB5*	2.83	3.97						
15	DRB1*03, DRB1*15; DRB3*; DRB5*	3.36	3.09						
16	DRB1*07, DRB1*13; DRB3*; DRB4*	2.18	6.76						
17	DRB1*15, DRB1*13, DRB3*; DRB5*	1.93	7.04						
18	DRB1*01, DRB1*04; DRB4*	2.49	28.59						
19	DRB1*01, DRB1*11; DRB3*	0.83	4.50						
20	DRB1*01	2.03	3.18						

For the T cell proliferation assay, on days 5, 6, 7 and 8, the cells in each well were gently resuspended and triplicate 100 microliter aliquots were transferred to each well of a round bottomed 96 well plate. The cultures were pulsed with 0.75 microCi [3H]-Thymidine (PERKIN ELMER®, Beaconsfield, UK) in 100 microliters AIM-V® culture medium and incubated for a further 18 hours before harvesting onto filter

mats (Perkin Elmer®) using a TOMTEC® HARVESTER 96TM Mach III cell harvester (TOMTEC® Inc., Hamden, Conn., USA). Counts per minute (cpm) for each well were determined using MELTILEX® solid scintillator (PERKIN ELMER® Life and Analytical Sciences, Shelton, Conn., USA) via scintillation counting on a Wallac 1450 Microbeta Trilux Microplate Scintillation and Luminescence Counter (Perkin Elmer®) in paralux, low background counting.

For proliferation assays, an empirical Stimulation Index (S) threshold of equal to, or greater than, 2 (SI≥2.0) was used whereby samples inducing proliferative responses above this threshold at any day after addition of protein were deemed positive. (The Stimulation Index is a ratio of stimulated proliferative response compared to a background index; an SI of 1=background or "noise".) For the triplicate proliferation data for each time point with each protein, the significance (p<0.05) of positive responses was defined by statistical and empirical thresholds by comparing CPM of test protein wells against medium-only control wells using unpaired two sample Student's T-Test.

The results of the proliferation assay are shown in Table 15. The results demonstrate a significantly reduced level of T cell responses from the amino acid substituted PE molecules: pIEX02-228 (SEQ ID NO:181) 5% donor responses; pIEX02-244 (SEQ ID NO:182) 10% donor responses; and, pIEX02-246 (SEQ ID NO:183) 20% donor responses, compared to WT PE (SEQ ID NO:180) which induced T cell responses in 70% of donors.

TABLE 15

Relative T-cel					
Substituted	variants	of PE compa	red to Wild-T	ype (WT) PE	
	WT	mIEVO2	nIEVO2	nIEV02	TT

	WT PE	pIEX02- 228	pIEX02- 244	pIEX02- 246	Hu A33
Donor 1	P				
Donor 2	P*				P
Donor 3	P*		P	P	P
Donor 4	*		1		1
Donor 5					
Donor 6	P				
Donor 7	•				
Donor 8	P				
Donor 9	P				
Donor 10	P				
Donor 11	P			P	P
Donor 12	P				P
Donor 13	P				
Donor 14	P	P		P	
Donor 15	P				
Donor 16	P				P
Donor 17	P				
Donor 18					
Donor 19			P	P	P
Donor 20					
% Donor	70	5	10	20	30
Proliferation					

^{*}Positive T cell responses for proliferation (SI \geq 2.00, significant p < 0.05) during the entire time course days 5-8 ("P") are shown.

**Borderline responses (significant p < 0.05 with SI \geq 1.90) are shown (*).

In addition to the proliferation assay, additional analysis of the cytokines IL-2 and IL-6 was performed using aliquots of culture supernatant taken on day 6. The analysis was 60 performed using the BD Cytometric Bead Array (CBA) Enhanced Sensitivity Flex Set Systems for IL-2 and IL-6 (BD Bioscience, Oxford, UK) according to the manufacturer's instructions. The enhanced sensitivity standards from the CBA kit were reconstituted and serially diluted before 65 adding 50 microliters of supernatant or standard to 20 microliters of mixed capture beads in 96 well filter plates

176

(Millipore, Watford, UK) and incubating for 2 hours. Mixed human detection reagent (20 microliters) was then added to each well and incubated for a further 2 hours. Plates were washed twice and enhanced detection (100 microliters) reagent added to each well for a final 1 hour incubation. Plates were washed before reading on an Accuri C6 instrument (BD Biosciences).

Data was analysed using FCAP v3.0 software (BD Biosciences). For each individual donor, data was expressed as pg/ml of cytokine for each donor and plotted on a log scale with a median of cytokine levels depicted as a line. The results are shown in FIG. 11 which shows a significantly reduced level of the cytokines IL-2 and IL-6 from the amino acid substituted PE molecules pIEX02-228 (SEQ ID NO:181), pIEX02-244 (SEQ ID NO:182) and pIEX02-246 (SEQ ID NO:183) compared to WT PE (SEQ ID NO:180).

The proliferation and cytokine results both independently demonstrate that the amino acid substitutions in PE result in greatly reduced level of T cell responses when using amino acid substituted forms of PE. These results considered and expected to correlate with low or reduced PE immunogenicity in human subjects.

Example 12

Cytotoxicity Analysis of Amino Acid Substituted PE in Dendritic Cells

Amino acid substituted forms of PE and WT PE may be generated as in Example 11. For a dendritic cell cytotoxicity assay, PBMC are isolated from healthy community donor buffy coats (preferably from blood drawn within 24 hours), for example, by Lymphoprep (Axis-shield, Dundee, UK) density centrifugation. To prepare monocyte-derived den-35 dritic cells (DC), CD14+ cells (monocytes) may be isolated from donor PBMC preparations using Miltenyi Monocyte Isolation Kit II (human) and LS columns (Miltenyi Biotech GmbH, Bergisch Gladbach, Germany; catalog #130-091-153). Monocytes are resuspended in an appropriate culture medium, such as AIM-V® cell culture medium supplemented with 1000 IU/ml IL-4 and 1000 IU/ml GM-CSF ("DC culture medium") to $4-6\times10^{\circ}$ cells/ml and then distributed in 24 well plates (e.g., 2 ml final culture volume). Cells are fed on day 2 by half volume DC culture medium 45 change. On day 3, amino acid substituted PE and WT PE proteins are added to semi-mature DC to selected final concentrations, such as 1 micrograms/ml or 10 micrograms/ ml. Semi-mature DC are incubated for a period of time, such as 24-72 hours, after which cells are assessed for cytotox-50 icity by viability, such as via use of Trypan Blue (Sigma, Dorset, UK) dye exclusion and by propidium iodide (PI) and Annexin V staining (Invitrogen, Paisley UK) followed by FACS analysis.

Example 13

Cytotoxicity Analysis of Anti-CD22 scFv Fused to Amino Acid Substituted PE in RAJI Cells

WT PE and amino acid substituted PE encoded by pIEX02-244 (SEQ ID NO: 178) are fused to an anti-CD22 single-chain Fv (scFv). The VH and VL (V_{kappa}) regions of RFB4 (Campana D. et al., *J. Immunol.*, 134:1524-1530 (1985); Mansfield, E., et al., Blood, 90:2020-2026 (1997) are synthesized. RFB4 VH is amplified using oligonucleotides: OL2043 and OL2044 (Table 12). RFB4 and VL (Vk) is amplified using oligonucleotides OL2045 and OL2046

(Table 12). The RFB4 scFv is obtained using a pull-through PCR reaction using oligonucleotides OL2047 introducing a NcoI site and OL2048 introducing a XhoI site. The resultant PCR product is subcloned into pET14b-K via NcoI and XhoI restriction enzymes (Fermentas catalog #FD0573 and 5 FD0695, respectively).

The gene encoding RFB4 scFv is fused to genes encoding either WT PE or amino acid substituted PE encoded by pIEX02-244 (SEQ ID NO: 178) having a C-terminal 8×Histag followed by the sorting signal EDLK to give fusion sequences SEQ ID NO:184 and SEQ ID NO:186, respectively, which are cloned into the expression vector pET14b-K by fusion PCR. To create these RFB4-PE fusions a fusion PCR is carried out. The RFB4 scFv gene is 15 amplified from pET14b-RFB4 using oligonucleotides OL2318 introducing a NcoI site and OL2320 (Table 12). The WT PE or the lead amino acid substituted PE genes are amplified from pET14b-K-WT PE or pET14b-K-244 PE, respectively, using oligonucleotides OL2321 and OL2322 20 introducing a N-terminal 8×His-EDLK and a XhoI site (Table 12). Both scFv and PE genes are fused by performing a PCR with oligonucleotides OL2318 and OL2322 (Table 12). The resulting full-length fragments are subcloned into pET14b-K using NcoI and XhoI restriction enzymes. Plas- 25 mids are transformed into BL21(DE3) E. coli (EMD Millipore, Feltham, UK) and clones are inoculated into 2TY+ Amp and grown overnight at 37° C. Two ml of overnight culture is inoculated into 350 ml 2TY+Amp media in a 1 L flask and grown to OD_{600nm} =1 before addition of IPTG 30 (Sigma) to 1 mM (final concentration). Cultures are grown overnight at 30 degrees C. overnight and centrifuged at 10000 rpm. Bacterial pellets are frozen at -80 until ready to

Pellets are defrosted on ice, extracted with 10 ml B-PER® 35 Bacterial Protein Extraction Reagent (PIERCE® Biotechnology, Rockford, Ill.; Thermo Scientific, Hemel Hempstead, UK) containing Lysozyme and DNasel (both Thermo Scientific), and rotated for 1 hour at room temperature. Samples are then centrifuged at 10000 rpm and supernatants 40 are discarded. Each pellet is resuspended in 5 ml B-PER containing Lysozyme and DNasel as above and extracted for an additional 30 min at room temperature. After centrifugation, pellets are pooled and washed successively with Wash Buffer A (50 mM Tris-HCl pH 8.0, 100 mM NaCl, 1 mM 45 Andre et al., Curr Gene Ther., 10(4):267-280 (2010). EDTA, 0.5 M urea and 1.0% Triton X-100), Wash Buffer B (Buffer A but without urea), and twice with Wash Buffer C (Buffer A but without urea or Triton X-100). After final wash, insoluble pellets are stored at -80° C. cOmplete® mini-EDTA protease inhibitors (Roche Diagnostics Ltd.) are 50 Baker & Carr, Current Drug Safety, 5(4):1-6 (2010). included at each step.

Pellets are resuspended in 10 ml Solubilisation Buffer (50 mM Tris-HCl pH 8.0, 100 mM NaCl, 8 M Urea and 1 mM DTT). OD_{280nm} is determined and the samples are diluted to approximately 1 mg/ml in Solubilisation Buffer. Protein 55 samples are allowed to denature for 4 hours at room temperature and centrifuged at 10000 rpm to remove insoluble debris. 10 ml of each solubilised protein samples is injected into a pre-soaked 12 ml, 3K MWCO cut-off SLIDE-A-LYSER® Dialysis Cassette dialysis device (Thermo Scien- 60 tific; PIERCE® Biotechnology, Inc., IL, USA), and dialyzed by placement overnight in a beaker containing 2.5 L Refolding Buffer A (50 mM Tris HCl pH 8.0, 100 mM NaCl, 5 mM reduced glutathione, 1 mM oxidised glutathione, 0.1 M arginine, 4 M urea). Dialysis buffer is replaced with, in 65 order, 2.5 L Refolding Buffer B (Buffer A with 2 M urea), 2.5 L Refolding Buffer C (Buffer A with 1 M urea) and 5 L

178

Refolding Buffer D (Buffer A without urea or arginine) for a minimum of 4 hours at each step.

Each sample is recovered from the dialysis cassette, buffer exchanged into 50 mM 2-N-morpholino)ethanesulfonic acid (MES) pH 6.2 using PD10 desalting columns (GE Healthcare, Little Chalfont, UK) and loaded onto a 1 ml SP FF Anion Exchange column (GE Healthcare). Each column is washed with 50 mM MES pH 6.2 before eluting using a linear 0M to 1M NaCl gradient in 50 mM MES pH6.2. Protein-containing fractions are pooled and run through a pre-equilibrated 16/60 Size Exclusion column (GE Healthcare) using 1×PBS as running buffer. Fractions containing the main protein peaks are collected, pooled and concentrated to approximately 1 ml, filter sterilized and quantified.

For cytotoxicity analysis, Raji cells (ATCC, CCL-86) are propagated in growth medium (RPMI-1640, 10% FBS, 1% Pen/Strep) and harvested during mid-log growth phase. Cells are diluted to 1×10^5 cells/ml in growth medium and 50 microliter aliquots are dispensed per well in white walled, clear bottom 96 well plates (CORNING® catalogue #3610, FISHER SCIENTIFIC®, Loughborough, UK). Each protein concentration (8×4-fold dilutions from 500 nanograms/ml) is tested in triplicate wells, and controls containing cells or growth medium only are also included. Test protein is diluted to 2x desired concentration in growth medium. 50 microliters of the test protein dilutions or controls are added to the Raji cells and plates are incubated 72 hrs in a humidified cell culture incubator (37° C., 5% CO₂). After incubation, plates are equilibrated at room temperature for 10 min. CELLTITER-GLO® (PROMEGA® catalogue #G7571) is prepared according to manufacturer's instructions and 100 microliters is added per well. Plates are incubated for 10 min before reading via a FLUOstar OPTIMA fluorescence plate reader (BMG Labtech Ltd., Aylesbury, UK)(also known as a fluorometer).

REFERENCES

Aida Y. & Pabst M. J., Journal of Immunological Methods, 132:191-195 (1990)

Al-Dosari et al., AAPS Journal, 11(4):671-681 (2009).

Allen et al. (Editor), Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Lippincott Williams & Wilkins; 9th Ed. (2011).

Antoniewski et al., Mol. Cell Biol. 14:4465 (1994).

Ash et al. (Editor), Handbook of Pharmaceutical Additives. Third Edition, Synapse Information Resources, Inc.; 3rd Ed. (2007).

Baker & Jones, Curr. Opin. Drug. Disc. Dev., 10(2):219-227

Bodles-Brakhop et al., Mol. Ther., 17(4):585-592 (2009). Brent et al., Cell, 43:729-736 (1985).

Bryson et al., BioDrugs., 24(1): 1-8 (2010).

Campana D. et al., J Immunol., 134:1524-1530 (1985). Canadian Patent No. 2,012,311.

Chaudhary et al., Proc. Natl. Acad. Sci. USA, 87:308-312 (1990).

Cherbas et. al., Genes Dev. 5:120-131 (1991).

Chester et. al., Expert Rev. Clin. Immunol., 1(4): 549-559 (2006).

Colosimo et al., Biotechniques, 29(2):314-8, 320-322 (2000).

Crouch, et al., J. Immunol. Methods, 160(1):81-88 (1993). Curiel et al., Hum. Gene Ther. 3:147 (1992).

D'Avino et al., Mol. Cell. Endocrinol. 113:1 (1995).

```
179
Donnelly et al., Drug Deliv. 17(4):187-207 (2010).
European Patent No. 234,994B1.
European Patent No. 461,809B1.
Feigner et al., Proc. Natl. Acad. Sci USA. 84:7413 (1987).
Feigner et al., Science 337:387 (1989).
Golzio et al., Curr Gene Ther. 10(4):256-266 (2010).
Hansen et al., J. Immunother. 33(3):297-304 (2011).
Harlow & Lane, Antibodies: A Laboratory Manual, Cold
  Spring Harbor Laboratory Press, 2nd ed., ISBN 978-
  087969314-5 (1988).
Harlow & Lane, Using Antibodies: A Laboratory Manual,
  Cold Spring Harbor Laboratory Press, ISBN 0879695447
Hausman & Cooper, The Cell: A Molecular Approach,
  Washington, D.C.: ASM Press. p. 51 (2004).
Higuchi, Using PCR to Engineer DNA, PCR Technology:
  Principles and Applications for DNA Amplification, H.
  Erlich, ed., Stockton Press, Chapter 6, pp. 61-70 (1989).
Hochuli et al., J Interferon Cytokine Res. 17 Suppl 1:S15-21
  (1997).
Holgate & Baker, Idrugs, 12(4):233-237 (2009).
Hu et al., Int. J. Cancer, 127(9):2222-2229 (2010).
Hutchinson et al., J. Biol. Chem. 255:6551 (1978).
Hutchinson et al., Proc. Natl. Acad. Sci. USA 83:710 (1986).
Hwang et al., Cell 48:129-136 (1987).
Itoi et al. J. Neurosci. 31(16):6132-6139 (2011).
Jaber & Baker, J. Pharm. Biomed. Anal. 43(4):1256-61
  (2007).
Karzenowski et al., BioTechniques 39: 191-200 (2005).
Klein et al., Curr. Opin. Biotechnol. 4(5):583-590 (1993).
Kreitman et al., Leuk. Lymphoma Suppl. 2:82-86 (2011).
Krieg et al., Nucl. Acids Res. 12, 7057-7070 (1984).
Kuan et al., Int. J. Cancer 129(1):111-21 (2011).
Kyte & Doolittle, J. Mol. Biol. 157(1):105-132 (1982).
Lim, et al., Hematology 10(3):255-9 (2005).
Mackey et al., Proc. Natl. Acad. Sci USA 85:8027 (1988).
Mansfield, E., et al., Blood, 90:2020-2026 (1997).
Mareeva et al., J. Immunol. Methods 353(1-2):78-86 (2010).
Miller et al., Somat. Cell Mol. Genet. 27(1-6): 115-34
Nagata et al., Adv. Drug Deliv. Rev. 61(11):977-985 (2009).
Namaka, et al., Curr MedRes Opin. 22(2):223-39 (2006).
Niles, et al., Anal. Biochem., 366, 197-206 (2007).
O'Neil, "The Merck Index: An Encyclopedia of Chemicals,
  Drugs, and Biologicals," 14th Ed. (2006).
Oliphant et al., Gene 44:177 (1986).
Olsson et al., J. Appl. Biochem 5, 347-445 (1983).
Onda et al., Proc. Natl. Acad. Sci. USA 105(32):11311-
  11316 (2008).
Onda et al., Proc. Natl. Acad. Sci. USA 108(14):5742-5747 50 U.S. Pat. No. 5,674,713.
  (2011).
Pastan et al., Leukemia and Lymphoma 52(S2):87-90 (2011).
Pastan et al., Science 254:1173-1177 (1991).
Pathak et al., Biotechnol J. 4(11): 1559-1572 (2009).
PDR Network, Physicians' Desk Reference 2011," PDR 55 U.S. Pat. No. 6,258,603.
  Network (2010).
PDR Network, Physicians' Desk Reference 2012," PDR
  Network (2011).
Pelham et al., Eur. J Biochem. 67, 247-56 (1976).
Perry et al., Drugs R D. 9(6):385-96 (2008).
Pichon et al., Curr Opin Biotechnol. 21(5):640-645 (2010).
PROMEGA®
               Technical Bulletin #TB 126 (Revised
  12/2010).
PROMEGA®
               Technical
                           Bulletin
                                     #TB288
                                                (Revised
  06/2009).
PROMEGA®
               Technical
                           Bulletin
                                    #TB288
```

08/2011).

180 PROMEGA® Technical Bulletin #TB306 (Revised 05/2009). PROMEGA® Technical Bulletin #TB359 (Revised 05/2009). Bulletin **PROMEGA®** Technical #TB359 (Revised 10/2011). Bulletin #TM045 **PROMEGA®** Technical (Revised 05/2011). Bulletin PROMEGA® Technical #TM051 (Revised 03/2009). **PROMEGA®** Technical Bulletin #TM051 (Revised 09/2011). Rochlitz et al., "Gene therapy of cancer," Swiss Med. Wkly., 131(1-2):4-9 (2001). 15 Rowe et al. (Editor), "Handbook of Pharmaceutical Excipients," Pharmaceutical Press, 6th Ed. (2009). Sadowski et al., Nature 335:563 (1988). Schellekens et al., J. Interferon Cytokine Res. 17(Suppl. 1), S5-S8 (1997). 20 Seetharam et al., Jour. Biol. Chem. 266:17376-17381 (1991).Shapira et al., Gastroenterology 140(3):935-946 (2011). Siegall et al., Mol. Cell. Biol. 10(6); 2443-2447 (1990). Siegall et al., *Biochemistry* 30:7154-7159 (1991). Squirrell et al., A Practical Guide to Industrial Uses of ATP Luminescence in Rapid Microbiology, Cara Technology Ltd., Lingfield, pp. 107-113 (1997). Stish et al., Br. J. Cancer 101(7):1114-1123 (2009). Theuer et al., J. Biol. Chem., 267(24): 16872-16877 (1992). Thomas et al., Clin. Cancer Res. 10:7079-7087 (2004). U.S. Patent Application Publication No. 2005/0228016. U.S. Patent Application Publication No. 2006/0100416. U.S. Patent Application Publication No. 2009/0123441. U.S. Patent Application Publication No. 2009/0142341. 35 U.S. Patent Application Publication No. 2009/0298175. U.S. Pat. No. 4,892,827. U.S. Pat. No. 4,985,461. U.S. Pat. No. 5,117,057. U.S. Pat. No. 5,225,443. 40 U.S. Pat. No. 5,324,637. U.S. Pat. No. 5,378,726. U.S. Pat. No. 5,459,127. U.S. Pat. No. 5,492,817. U.S. Pat. No. 5,530,028. 45 U.S. Pat. No. 5,580,859. U.S. Pat. No. 5,583,024. U.S. Pat. No. 5,589,466. U.S. Pat. No. 5,641,641. U.S. Pat. No. 5,650,289. U.S. Pat. No. 5,693,622; U.S. Pat. No. 5,700,673. U.S. Pat. No. 5,821,238. U.S. Pat. No. 6,013,836. U.S. Pat. No. 6,602,677. U.S. Pat. No. 6,982,152. U.S. Pat. No. 7,083,911. U.S. Pat. No. 7,241,584. U.S. Pat. No. 7,282,348. U.S. Pat. No. 7,304,161. U.S. Pat. No. 7,304,162. U.S. Pat. No. 7,375,093 U.S. Pat. No. 7,452,663.

U.S. Pat. No. 7,456,315.

U.S. Pat. No. 7,531,326.

U.S. Pat. No. 7,563,879.

(Revised

181 182 WO 2002/066612 (PCT/US2002/005090). U.S. Pat. No. 7,700,310. U.S. Pat. No. 7,732,128. WO 2002/066613 (PCT/US2002/005090). U.S. Pat. No. 7,741,067. WO 2002/066614 (PCT/US/2002/005706). U.S. Pat. No. 7,750,136 WO 2002/066615 (PCT/US2002/005708). WO 2003/027266 (PCT/US/2002/05234). U.S. Pat. No. 7,919,269. U.S. Pat. No. 7,935,510. WO 2003/027289 (PCT/US2002/005026). U.S. Pat. No. 8,076,517. WO 2005/108617 (PCT/US2005/015089). WO 2008/073154 (PCT/US2007/016747). U.S. Pat. No. 8,105,825. U.S. Pat. No. 8,854,044. WO 2008/153801 (PCT/US2008/006757). WO 2009/025866 (PCT/US2008/010040). Ulmer et al., Science 259:1745 (1993). WO 2009/045370 (PCT/US2008/011270). University of the Sciences in Philadelphia (Editor), "Remington: The Science and Practice of Pharmacy," Lippin-WO 2009/048560 (PCT/US2008/011563). cott Williams & Wilkins, 21st Ed. (2005). WO 2010/042189 (PCT/US2009/005510). Uskoković et al., J. Biomed. Mater. Res. B Appl. Biomater WO 2011/119773 (PCT/US2011/029682). 96(1):152-191 (2011). Wu et al., J. Biol. Chem. 263:14621 (1988). Wells, Cell Biol Toxicol. 26(1):21-28 (2010). Wu et al., J. Biol. Chem. 267:963 (1992). Weldon & Pastan, FEBS Journal 278(23):4683-4700 (2011) Wu et al., J. Biol. Chem. 262:4429 (1987) WO 1995/018863 (PCT/FR1995/000022). Xiong et al., Pharmazie 66(3):158-64 (2011). WO 1995/021931 (PCT/FR1995/000098). Yao et al., Cell 71:63 (1992). WO 1996/017823 (PCT/FR1995/001595). 20 Yao et al., Nature 366:476 (1993). WO 1996/025508 (PCT/FR1996/000248). Zielinski et al., J. Immunother. 32(8):817-825 (October-WO 2001/070816 (PCT/US2001/090500). 2009).

Zoller et al., DNA 3:479 (1984).

SEQUENCE LISTING

WO 2002/029075 (PCT/US2001/030608).

```
<160> NUMBER OF SEQ ID NOS: 286
<210> SEQ ID NO 1
<211> LENGTH: 347
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(347)
<223> OTHER INFORMATION: Pseudomonas aeruginosa PE38
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (3)..(114)
<223> OTHER INFORMATION: Domain II (cytosolic translocation domain)
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (115)..(133)
<223> OTHER INFORMATION: Partial Domain IB
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (134) .. (347)
<223> OTHER INFORMATION: Domain III (cytotoxic domain)
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (343)..(347)
<223> OTHER INFORMATION: Alternative carboxy-terminal tail (amino
      acids..REDLK)
<400> SEOUENCE: 1
Pro Glu Gly Gly Ser Leu Ala Ala Leu Thr Ala His Gln Ala Cys His
Leu Pro Leu Glu Thr Phe Thr Arg His Arg Gln Pro Arg Gly Trp Glu
                                25
Gln Leu Glu Gln Cys Gly Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr
Leu Ala Ala Arg Leu Ser Trp Asn Gln Val Asp Gln Val Ile Arg Asn
                       55
Ala Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg
Glu Gln Pro Glu Gln Ala Arg Leu Ala Leu Thr Leu Ala Ala Glu
```

-continued

```
Ser Glu Arg Phe Val Arg Gln Gly Thr Gly Asn Asp Glu Ala Gly Ala
           100
                                105
Ala Ser Gly Pro Ala Asp Ser Gly Asp Ala Leu Leu Glu Arg Asn Tyr
                          120
Pro Thr Gly Ala Glu Phe Leu Gly Asp Gly Gly Asp Ile Ser Phe Ser
Thr Arg Gly Thr Gln Asn Trp Thr Val Glu Arg Leu Leu Gln Ala His
Arg Gln Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr His Gly Thr
Phe Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg
Ser Gln Asp Leu Asp Ala Ile Trp Arg Gly Phe Tyr Ile Ala Gly Asp
Pro Ala Leu Ala Tyr Gly Tyr Ala Gln Asp Gln Glu Pro Asp Ala Arg
210 215 220
Gly Arg Ile Arg Asn Gly Ala Leu Leu Arg Val Tyr Val Pro Arg Ser
Ser Leu Pro Gly Phe Tyr Arg Thr Gly Leu Thr Leu Ala Ala Pro Glu
Ala Ala Gly Glu Val Glu Arg Leu Ile Gly His Pro Leu Pro Leu Arg
                              265
Leu Asp Ala Ile Thr Gly Pro Glu Glu Glu Gly Gly Arg Leu Glu Thr
                          280
Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr Val Val Ile Pro Ser Ala
Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp Leu Asp Pro Ser Ser
                   310
                                        315
Ile Pro Asp Lys Glu Gln Ala Ile Ser Ala Leu Pro Asp Tyr Ala Ser
              325
Gln Pro Gly Lys Pro Pro Arg Glu Asp Leu Lys
           340
<210> SEQ ID NO 2
<211> LENGTH: 359
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Gly-Ser-PE38 polypeptide
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(12)
<223> OTHER INFORMATION: artificial linker sequence
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (13)..(359)
<223> OTHER INFORMATION: Pseudomonas aeruginosa PE38
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (15)..(126)
<223> OTHER INFORMATION: Domain II (cytosolic translocation domain)
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (127) .. (145)
<223> OTHER INFORMATION: Partial Domain IB
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (146)..(359)
<223 > OTHER INFORMATION: Domain III (cytotoxic domain)
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (355)..(359)
<223> OTHER INFORMATION: Alternative carboxy-terminal tail (amino
```

-continued

										-	con	tını	ued	
	acids	RE	DLK)											
<400>	SEQUE	NCE:	2											
Gly Gl	y Gly	Gly	Gly 5	Ser	Gly	Gly	Gly	Gly 10	Gly	Ser	Pro	Glu	Gly 15	Gly
Ser Le	u Ala	Ala 20	Leu	Thr	Ala	His	Gln 25	Ala	Cys	His	Leu	Pro 30	Leu	Glu
Thr Ph	e Thr 35	Arg	His	Arg	Gln	Pro 40	Arg	Gly	Trp	Glu	Gln 45	Leu	Glu	Gln
Cys G		Pro	Val	Gln	Arg 55	Leu	Val	Ala	Leu	Tyr 60	Leu	Ala	Ala	Arg
Leu Se 65	er Trp	Asn	Gln	Val 70	Asp	Gln	Val	Ile	Arg 75	Asn	Ala	Leu	Ala	Ser 80
Pro G	y Ser	Gly	Gly 85	Asp	Leu	Gly	Glu	Ala 90	Ile	Arg	Glu	Gln	Pro 95	Glu
Gln Al	a Arg	Leu 100	Ala	Leu	Thr	Leu	Ala 105	Ala	Ala	Glu	Ser	Glu 110	Arg	Phe
Val Aı	g Gln 115	Gly	Thr	Gly	Asn	Asp 120	Glu	Ala	Gly	Ala	Ala 125	Ser	Gly	Pro
Ala As		Gly	Asp	Ala	Leu 135	Leu	Glu	Arg	Asn	Tyr 140	Pro	Thr	Gly	Ala
Glu Ph 145	ie Leu	Gly	Asp	Gly 150	Gly	Asp	Ile	Ser	Phe 155	Ser	Thr	Arg	Gly	Thr 160
Gln As	n Trp	Thr	Val 165	Glu	Arg	Leu	Leu	Gln 170	Ala	His	Arg	Gln	Leu 175	Glu
Glu Aı	g Gly	Tyr 180	Val	Phe	Val	Gly	Tyr 185	His	Gly	Thr	Phe	Leu 190	Glu	Ala
Ala Gl	n Ser 195	Ile	Val	Phe	Gly	Gly 200	Val	Arg	Ala	Arg	Ser 205	Gln	Asp	Leu
Asp Al		Trp	Arg	Gly	Phe 215	Tyr	Ile	Ala	Gly	Asp 220	Pro	Ala	Leu	Ala
Tyr G1 225	y Tyr	Ala	Gln	Asp 230	Gln	Glu	Pro	Asp	Ala 235	Arg	Gly	Arg	Ile	Arg 240
Asn G	y Ala	Leu	Leu 245	Arg	Val	Tyr	Val	Pro 250	Arg	Ser	Ser	Leu	Pro 255	Gly
Phe Ty	r Arg	Thr 260	Gly	Leu	Thr	Leu	Ala 265	Ala	Pro	Glu	Ala	Ala 270	Gly	Glu
Val G	u Arg. 275	Leu	Ile	Gly	His	Pro 280	Leu	Pro	Leu	Arg	Leu 285	Asp	Ala	Ile
Thr Gl		Glu	Glu	Glu	Gly 295	Gly	Arg	Leu	Glu	Thr 300	Ile	Leu	Gly	Trp
Pro Le 305	eu Ala	Glu	Arg	Thr 310	Val	Val	Ile	Pro	Ser 315	Ala	Ile	Pro	Thr	Asp 320
Pro Ai	g Asn	Val	Gly 325	Gly	Asp	Leu	Asp	Pro 330	Ser	Ser	Ile	Pro	Asp 335	Lys
Glu Gl	n Ala	Ile 340	Ser	Ala	Leu	Pro	Asp 345	Tyr	Ala	Ser	Gln	Pro 350	Gly	Lys
Pro Pi	o Arg 355	Glu	Asp	Leu	Lys									
<210>	SEQ I	D NO	3											

<210> SEQ ID NO 3 <211> LENGTH: 12 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE:

-continued

```
<223> OTHER INFORMATION: 2x((Gx5)S) linker sequence
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(12)
<223> OTHER INFORMATION: artificial linker sequence
<400> SEQUENCE: 3
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser
               5
<210> SEQ ID NO 4
<211> LENGTH: 347
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(347)
<223> OTHER INFORMATION: Variant of Pseudomonas aeruginosa PE38 in SEQ
    ID NO:1
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (114) .. (114)
<223> OTHER INFORMATION: Ser-to-Asn change compared to SEQ ID NO:1
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (141)..(141)
<223> OTHER INFORMATION: Ile-to-Val change compared to SEQ ID NO:1
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (249) .. (249)
<223> OTHER INFORMATION: Gly-to-Ser change compared to SEQ ID NO:1
<400> SEOUENCE: 4
Pro Glu Gly Gly Ser Leu Ala Ala Leu Thr Ala His Gln Ala Cys His
Leu Pro Leu Glu Thr Phe Thr Arg His Arg Gln Pro Arg Gly Trp Glu
                               25
Gln Leu Glu Gln Cys Gly Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr
Leu Ala Ala Arg Leu Ser Trp Asn Gln Val Asp Gln Val Ile Arg Asn
Ala Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg
Glu Gln Pro Glu Gln Ala Arg Leu Ala Leu Thr Leu Ala Ala Ala Glu
Ser Glu Arg Phe Val Arg Gln Gly Thr Gly Asn Asp Glu Ala Gly Ala
Ala Asn Gly Pro Ala Asp Ser Gly Asp Ala Leu Leu Glu Arg Asn Tyr
Pro Thr Gly Ala Glu Phe Leu Gly Asp Gly Gly Asp Val Ser Phe Ser
Thr Arg Gly Thr Gln Asn Trp Thr Val Glu Arg Leu Leu Gln Ala His
 \hbox{Arg Gln Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr His Gly Thr } \\
Phe Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg
                               185
Ser Gln Asp Leu Asp Ala Ile Trp Arg Gly Phe Tyr Ile Ala Gly Asp
Pro Ala Leu Ala Tyr Gly Tyr Ala Gln Asp Gln Glu Pro Asp Ala Arg
Gly Arg Ile Arg Asn Gly Ala Leu Leu Arg Val Tyr Val Pro Arg Ser
```

```
225
Ser Leu Pro Gly Phe Tyr Arg Thr Ser Leu Thr Leu Ala Ala Pro Glu
               245
                                   250
Ala Ala Gly Glu Val Glu Arg Leu Ile Gly His Pro Leu Pro Leu Arg
                             265
Leu Asp Ala Ile Thr Gly Pro Glu Glu Glu Gly Gly Arg Leu Glu Thr
Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr Val Val Ile Pro Ser Ala
Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp Leu Asp Pro Ser Ser
Ile Pro Asp Lys Glu Gln Ala Ile Ser Ala Leu Pro Asp Tyr Ala Ser
Gln Pro Gly Lys Pro Pro Arg Glu Asp Leu Lys
<210> SEQ ID NO 5
<211> LENGTH: 9
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(9)
<223 > OTHER INFORMATION: Epitope 1
<400> SEQUENCE: 5
Ile Ser Phe Ser Thr Arg Gly Thr Gln
<210> SEQ ID NO 6
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(9)
<223> OTHER INFORMATION: Epitope 2
<400> SEQUENCE: 6
Gly Thr Gln Asn Trp Thr Val Glu Arg
    5
<210> SEQ ID NO 7
<211> LENGTH: 9
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(9)
<223 > OTHER INFORMATION: Epitope 3
<400> SEQUENCE: 7
Ile Val Phe Gly Gly Val Arg Ala Arg
               5
<210> SEQ ID NO 8
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(9)
<223> OTHER INFORMATION: Epitope 4
<400> SEQUENCE: 8
```

```
Ala Arg Ser Gln Asp Leu Asp Ala Ile
<210> SEQ ID NO 9
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(9)
<223> OTHER INFORMATION: Epitope 5
<400> SEQUENCE: 9
Leu Arg Val Tyr Val Pro Arg Ser Ser
<210> SEQ ID NO 10
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(9)
<223 > OTHER INFORMATION: Epitope 6
<400> SEQUENCE: 10
Ile Pro Asp Lys Glu Gln Ala Ile Ser
1 5
<210> SEQ ID NO 11
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Gly-Ser linker plus PE38 sequence
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 1
<400> SEQUENCE: 11
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Pro Glu Gly
<210> SEQ ID NO 12
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Gly-Ser linker plus PE38 sequence
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 2
<400> SEQUENCE: 12
Gly Gly Ser Gly Gly Gly Gly Ser Pro Glu Gly Gly Ser Leu
               5
<210> SEQ ID NO 13
<211 > LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Gly-Ser linker plus PE38 sequence
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 3
```

```
<400> SEQUENCE: 13
Gly Gly Gly Gly Ser Pro Glu Gly Gly Ser Leu Ala Ala Leu
<210> SEQ ID NO 14
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Gly-Ser linker plus PE38 sequence
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 4
<400> SEQUENCE: 14
Gly Gly Ser Pro Glu Gly Gly Ser Leu Ala Ala Leu Thr Ala His
<210> SEQ ID NO 15
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 5
<400> SEQUENCE: 15
Pro Glu Gly Gly Ser Leu Ala Ala Leu Thr Ala His Gln Ala Cys
                                   10
<210> SEQ ID NO 16
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 6
<400> SEQUENCE: 16
Gly Ser Leu Ala Ala Leu Thr Ala His Gln Ala Cys His Leu Pro
     5
                                 10
<210> SEQ ID NO 17
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 7
<400> SEQUENCE: 17
Ala Ala Leu Thr Ala His Gln Ala Cys His Leu Pro Leu Glu Thr
1 5
                                   10
<210> SEQ ID NO 18
<211 > LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 8
<400> SEQUENCE: 18
```

```
Thr Ala His Gln Ala Cys His Leu Pro Leu Glu Thr Phe Thr Arg
<210> SEQ ID NO 19
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 9
<400> SEQUENCE: 19
Gln Ala Cys His Leu Pro Leu Glu Thr Phe Thr Arg His Arg Gln
<210> SEQ ID NO 20
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 10
<400> SEQUENCE: 20
His Leu Pro Leu Glu Thr Phe Thr Arg His Arg Gln Pro Arg Gly
1 5
<210> SEQ ID NO 21
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 11
<400> SEQUENCE: 21
Leu Glu Thr Phe Thr Arg His Arg Gln Pro Arg Gly Trp Glu Gln
<210> SEQ ID NO 22
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 12
<400> SEQUENCE: 22
Phe Thr Arg His Arg Gln Pro Arg Gly Trp Glu Gln Leu Glu Gln
<210> SEQ ID NO 23
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 13
<400> SEQUENCE: 23
His Arg Gln Pro Arg Gly Trp Glu Gln Leu Glu Gln Cys Gly Tyr
```

```
<210> SEQ ID NO 24
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 14
<400> SEQUENCE: 24
Pro Arg Gly Trp Glu Gln Leu Glu Gln Cys Gly Tyr Pro Val Gln
<210> SEQ ID NO 25
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 15
<400> SEQUENCE: 25
Trp Glu Gln Leu Glu Gln Cys Gly Tyr Pro Val Gln Arg Leu Val
                                    10
<210> SEQ ID NO 26
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1) ..(15)
<223> OTHER INFORMATION: Peptide 16
<400> SEQUENCE: 26
Leu Glu Gln Cys Gly Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr
              5
                                  10
<210> SEQ ID NO 27
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 17
<400> SEQUENCE: 27
Cys Gly Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr Leu Ala Ala
<210> SEQ ID NO 28
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 18
<400> SEQUENCE: 28
Pro Val Gln Arg Leu Val Ala Leu Tyr Leu Ala Ala Arg Leu Ser
<210> SEQ ID NO 29
<211> LENGTH: 15
<212> TYPE: PRT
```

```
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 19
<400> SEQUENCE: 29
Arg Leu Val Ala Leu Tyr Leu Ala Ala Arg Leu Ser Trp Asn Gln
               5
<210> SEQ ID NO 30
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 20
<400> SEQUENCE: 30
Ala Leu Tyr Leu Ala Ala Arg Leu Ser Trp Asn Gln Val Asp Gln
<210> SEQ ID NO 31
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 21
<400> SEQUENCE: 31
Leu Ala Ala Arg Leu Ser Trp Asn Gln Val Asp Gln Val Ile Arg
<210> SEQ ID NO 32
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 22
<400> SEQUENCE: 32
Arg Leu Ser Trp Asn Gln Val Asp Gln Val Ile Arg Asn Ala Leu
<210> SEQ ID NO 33
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 23
<400> SEQUENCE: 33
Trp Asn Gln Val Asp Gln Val Ile Arg Asn Ala Leu Ala Ser Pro
                                    10
<210> SEQ ID NO 34
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
```

```
<223> OTHER INFORMATION: Peptide 24
<400> SEQUENCE: 34
Val Asp Gln Val Ile Arg Asn Ala Leu Ala Ser Pro Gly Ser Gly
<210> SEQ ID NO 35
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 25
<400> SEQUENCE: 35
Val Ile Arg Asn Ala Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu
<210> SEQ ID NO 36
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 26
<400> SEQUENCE: 36
Asn Ala Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu Gly Glu Ala
              5
                                   10
<210> SEQ ID NO 37
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 27
<400> SEQUENCE: 37
Ala Ser Pro Gly Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg Glu
               5
<210> SEQ ID NO 38
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 28
<400> SEQUENCE: 38
Gly Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg Glu Gln Pro Glu
                                   10
<210> SEQ ID NO 39
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 29
<400> SEQUENCE: 39
```

```
Gly Asp Leu Gly Glu Ala Ile Arg Glu Gln Pro Glu Gln Ala Arg
   5
                                   10
<210> SEQ ID NO 40
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 30
<400> SEQUENCE: 40
Gly Glu Ala Ile Arg Glu Gln Pro Glu Gln Ala Arg Leu Ala Leu
<210> SEQ ID NO 41
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 31
<400> SEQUENCE: 41
Ile Arg Glu Gln Pro Glu Gln Ala Arg Leu Ala Leu Thr Leu Ala
                                   10
<210> SEQ ID NO 42
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 32
<400> SEQUENCE: 42
Gln Pro Glu Gln Ala Arg Leu Ala Leu Thr Leu Ala Ala Ala Glu
               5
                                   10
<210> SEQ ID NO 43
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 33
<400> SEQUENCE: 43
Gln Ala Arg Leu Ala Leu Thr Leu Ala Ala Ala Glu Ser Glu Arg
<210> SEQ ID NO 44
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 34
<400> SEQUENCE: 44
Leu Ala Leu Thr Leu Ala Ala Glu Ser Glu Arg Phe Val Arg
     5
```

```
<210> SEQ ID NO 45
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 35
<400> SEQUENCE: 45
Thr Leu Ala Ala Ala Glu Ser Glu Arg Phe Val Arg Gln Gly Thr
<210> SEQ ID NO 46
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 36
<400> SEQUENCE: 46
Ala Ala Glu Ser Glu Arg Phe Val Arg Gln Gly Thr Gly Asn Asp
1 5
                                    10
<210> SEQ ID NO 47
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 37
<400> SEOUENCE: 47
Ser Glu Arg Phe Val Arg Gln Gly Thr Gly Asn Asp Glu Ala Gly
                                    10
<210> SEQ ID NO 48
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 38
<400> SEQUENCE: 48
Phe Val Arg Gln Gly Thr Gly Asn Asp Glu Ala Gly Ala Ala Ser
<210> SEQ ID NO 49
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 39
<400> SEQUENCE: 49
Gln Gly Thr Gly Asn Asp Glu Ala Gly Ala Ala Ser Gly Pro Ala
                                    10
<210> SEQ ID NO 50
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
```

```
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 40
<400> SEQUENCE: 50
Gly Asn Asp Glu Ala Gly Ala Ala Ser Gly Pro Ala Asp Ser Gly
<210> SEQ ID NO 51
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 41
<400> SEQUENCE: 51
Glu Ala Gly Ala Ala Ser Gly Pro Ala Asp Ser Gly Asp Ala Leu
                                    10
<210> SEQ ID NO 52
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1) .. (15)
<223> OTHER INFORMATION: Peptide 42
<400> SEQUENCE: 52
Ala Ala Ser Gly Pro Ala Asp Ser Gly Asp Ala Leu Leu Glu Arg
                                    10
<210> SEQ ID NO 53
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 43
<400> SEQUENCE: 53
Gly Pro Ala Asp Ser Gly Asp Ala Leu Leu Glu Arg Asn Tyr Pro
<210> SEQ ID NO 54
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 44
<400> SEOUENCE: 54
Asp Ser Gly Asp Ala Leu Leu Glu Arg Asn Tyr Pro Thr Gly Ala
<210> SEQ ID NO 55
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 45
```

```
<400> SEQUENCE: 55
Asp Ala Leu Leu Glu Arg Asn Tyr Pro Thr Gly Ala Glu Phe Leu
                                     10
<210> SEQ ID NO 56
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 46
<400> SEQUENCE: 56
Leu Glu Arg Asn Tyr Pro Thr Gly Ala Glu Phe Leu Gly Asp Gly
<210> SEQ ID NO 57
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 47
<400> SEOUENCE: 57
Asn Tyr Pro Thr Gly Ala Glu Phe Leu Gly Asp Gly Gly Asp Ile
               5
                                     1.0
<210> SEQ ID NO 58
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 48
<400> SEQUENCE: 58
Thr Gly Ala Glu Phe Leu Gly Asp Gly Gly Asp Ile Ser Phe Ser
<210> SEQ ID NO 59
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 49
<400> SEQUENCE: 59
Glu Phe Leu Gly Asp Gly Gly Asp Ile Ser Phe Ser Thr Arg Gly 1 \phantom{\bigg|} 5 \phantom{\bigg|} 10 \phantom{\bigg|} 15
<210> SEQ ID NO 60
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 50
<400> SEQUENCE: 60
Gly Asp Gly Gly Asp Ile Ser Phe Ser Thr Arg Gly Thr Gln Asn
```

```
10
                                                        15
<210> SEQ ID NO 61
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 51
<400> SEQUENCE: 61
Gly Asp Ile Ser Phe Ser Thr Arg Gly Thr Gln Asn Trp Thr Val
<210> SEQ ID NO 62
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 52
<400> SEQUENCE: 62
Ser Phe Ser Thr Arg Gly Thr Gln Asn Trp Thr Val Glu Arg Leu
                                   10
<210> SEQ ID NO 63
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 53
<400> SEQUENCE: 63
Thr Arg Gly Thr Gln Asn Trp Thr Val Glu Arg Leu Leu Gln Ala
1 5
                                    10
<210> SEQ ID NO 64
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 54
<400> SEQUENCE: 64
Thr Gln Asn Trp Thr Val Glu Arg Leu Leu Gln Ala His Arg Gln
<210> SEQ ID NO 65
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 55
<400> SEQUENCE: 65
Trp Thr Val Glu Arg Leu Leu Gln Ala His Arg Gln Leu Glu Glu
1
                                   10
```

```
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 56
<400> SEQUENCE: 66
Glu Arg Leu Gln Ala His Arg Gln Leu Glu Glu Arg Gly Tyr
1 5
<210> SEQ ID NO 67
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 57
<400> SEQUENCE: 67
Leu Gln Ala His Arg Gln Leu Glu Glu Arg Gly Tyr Val Phe Val
                                  10
<210> SEQ ID NO 68
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 58
<400> SEQUENCE: 68
His Arg Gln Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr His
<210> SEQ ID NO 69
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 59
<400> SEQUENCE: 69
Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr His Gly Thr Phe
<210> SEQ ID NO 70
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 60
<400> SEQUENCE: 70
Arg Gly Tyr Val Phe Val Gly Tyr His Gly Thr Phe Leu Glu Ala
1 5
                                  10
<210> SEQ ID NO 71
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
```

```
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 61
<400> SEQUENCE: 71
Val Phe Val Gly Tyr His Gly Thr Phe Leu Glu Ala Ala Gln Ser
                                    10
<210> SEQ ID NO 72
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 62
<400> SEQUENCE: 72
Gly Tyr His Gly Thr Phe Leu Glu Ala Ala Gln Ser Ile Val Phe
<210> SEQ ID NO 73
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 63
<400> SEQUENCE: 73
Gly Thr Phe Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val
              5
<210> SEQ ID NO 74
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 64
<400> SEQUENCE: 74
Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg
                                    10
<210> SEQ ID NO 75
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 65
<400> SEQUENCE: 75
Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser Gln Asp
               5
                                    10
<210> SEQ ID NO 76
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 66
```

```
<400> SEQUENCE: 76
Ile Val Phe Gly Gly Val Arg Ala Arg Ser Gln Asp Leu Asp Ala
                                     10
<210> SEQ ID NO 77
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 67
<400> SEQUENCE: 77
Gly Gly Val Arg Ala Arg Ser Gln Asp Leu Asp Ala Ile Trp Arg
<210> SEQ ID NO 78
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 68
<400> SEQUENCE: 78
Arg Ala Arg Ser Gln Asp Leu Asp Ala Ile Trp Arg Gly Phe Tyr 1 \phantom{\bigg|} 10 \phantom{\bigg|} 15
<210> SEO ID NO 79
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 69
<400> SEOUENCE: 79
Ser Gln Asp Leu Asp Ala Ile Trp Arg Gly Phe Tyr Ile Ala Gly
   5
                                    10
<210> SEQ ID NO 80
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 70
<400> SEQUENCE: 80
Leu Asp Ala Ile Trp Arg Gly Phe Tyr Ile Ala Gly Asp Pro Ala
<210> SEQ ID NO 81
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 71
<400> SEQUENCE: 81
Ile Trp Arg Gly Phe Tyr Ile Ala Gly Asp Pro Ala Leu Ala Tyr
```

```
<210> SEQ ID NO 82
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 72
<400> SEQUENCE: 82
Gly Phe Tyr Ile Ala Gly Asp Pro Ala Leu Ala Tyr Gly Tyr Ala
<210> SEQ ID NO 83
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 73
<400> SEQUENCE: 83
Ile Ala Gly Asp Pro Ala Leu Ala Tyr Gly Tyr Ala Gl<br/>n Asp Gl<br/>n 1 10 15
<210> SEO ID NO 84
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 74
<400> SEOUENCE: 84
Asp Pro Ala Leu Ala Tyr Gly Tyr Ala Gln Asp Gln Glu Pro Asp
                                    10
<210> SEQ ID NO 85
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 75
<400> SEQUENCE: 85
Leu Ala Tyr Gly Tyr Ala Gln Asp Gln Glu Pro Asp Ala Arg Gly
<210> SEQ ID NO 86
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 76
<400> SEQUENCE: 86
Gly Tyr Ala Gln Asp Gln Glu Pro Asp Ala Arg Gly Arg Ile Arg
1 5
                                   10
<210> SEQ ID NO 87
```

<211> LENGTH: 15

```
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 77
<400> SEQUENCE: 87
Gln Asp Gln Glu Pro Asp Ala Arg Gly Arg Ile Arg Asn Gly Ala
<210> SEQ ID NO 88
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 78
<400> SEQUENCE: 88
<210> SEQ ID NO 89
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 79
<400> SEQUENCE: 89
Ala Arg Gly Arg Ile Arg Asn Gly Ala Leu Leu Arg Val Tyr Val
<210> SEQ ID NO 90
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 80
<400> SEQUENCE: 90
Arg Ile Arg Asn Gly Ala Leu Leu Arg Val Tyr Val Pro Arg Ser
<210> SEQ ID NO 91
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 81
<400> SEQUENCE: 91
Asn Gly Ala Leu Leu Arg Val Tyr Val Pro Arg Ser Ser Leu Pro
                                  1.0
<210> SEQ ID NO 92
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
```

```
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 82
<400> SEQUENCE: 92
Leu Leu Arg Val Tyr Val Pro Arg Ser Ser Leu Pro Gly Phe Tyr
<210> SEQ ID NO 93
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 83
<400> SEQUENCE: 93
Val Tyr Val Pro Arg Ser Ser Leu Pro Gly Phe Tyr Arg Thr Gly
<210> SEQ ID NO 94
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 84
<400> SEQUENCE: 94
Pro Arg Ser Ser Leu Pro Gly Phe Tyr Arg Thr Gly Leu Thr Leu
                                   10
<210> SEQ ID NO 95
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 85
<400> SEQUENCE: 95
Ser Leu Pro Gly Phe Tyr Arg Thr Gly Leu Thr Leu Ala Ala Pro
<210> SEQ ID NO 96
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 86
<400> SEQUENCE: 96
Gly Phe Tyr Arg Thr Gly Leu Thr Leu Ala Ala Pro Glu Ala Ala
1 5
                                   10
<210> SEQ ID NO 97
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 87
<400> SEQUENCE: 97
```

```
Arg Thr Gly Leu Thr Leu Ala Ala Pro Glu Ala Ala Gly Glu Val
<210> SEQ ID NO 98
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 88
<400> SEQUENCE: 98
Leu Thr Leu Ala Ala Pro Glu Ala Ala Gly Glu Val Glu Arg Leu
<210> SEQ ID NO 99
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 89
<400> SEQUENCE: 99
Ala Ala Pro Glu Ala Ala Gly Glu Val Glu Arg Leu Ile Gly His
<210> SEQ ID NO 100
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 90
<400> SEQUENCE: 100
Glu Ala Ala Gly Glu Val Glu Arg Leu Ile Gly His Pro Leu Pro
<210> SEQ ID NO 101
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 91
<400> SEQUENCE: 101
Gly Glu Val Glu Arg Leu Ile Gly His Pro Leu Pro Leu Arg Leu
<210> SEQ ID NO 102
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 92
<400> SEQUENCE: 102
Glu Arg Leu Ile Gly His Pro Leu Pro Leu Arg Leu Asp Ala Ile
```

```
<210> SEQ ID NO 103
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 93
<400> SEQUENCE: 103
Ile Gly His Pro Leu Pro Leu Arg Leu Asp Ala Ile Thr Gly Pro
<210> SEQ ID NO 104
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 94
<400> SEQUENCE: 104
Pro Leu Pro Leu Arg Leu Asp Ala Ile Thr Gly Pro Glu Glu Glu
                                   10
<210> SEQ ID NO 105
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1) ..(15)
<223> OTHER INFORMATION: Peptide 95
<400> SEQUENCE: 105
Leu Arg Leu Asp Ala Ile Thr Gly Pro Glu Glu Glu Gly Gly Arg
1 5
                                  10
<210> SEQ ID NO 106
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 96
<400> SEQUENCE: 106
Asp Ala Ile Thr Gly Pro Glu Glu Glu Gly Gly Arg Leu Glu Thr
<210> SEQ ID NO 107
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 97
<400> SEOUENCE: 107
Thr Gly Pro Glu Glu Glu Gly Gly Arg Leu Glu Thr Ile Leu Gly
<210> SEQ ID NO 108
<211> LENGTH: 15
```

<212> TYPE: PRT

```
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 98
<400> SEQUENCE: 108
Glu Glu Glu Gly Gly Arg Leu Glu Thr Ile Leu Gly Trp Pro Leu
               5
                                   10
<210> SEQ ID NO 109
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 99
<400> SEQUENCE: 109
Gly Gly Arg Leu Glu Thr Ile Leu Gly Trp Pro Leu Ala Glu Arg
<210> SEQ ID NO 110
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 100
<400> SEQUENCE: 110
Leu Glu Thr Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr Val Val
                                   10
<210> SEQ ID NO 111
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 101
<400> SEQUENCE: 111
Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr Val Val Ile Pro Ser
               5
<210> SEQ ID NO 112
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 102
<400> SEOUENCE: 112
Trp Pro Leu Ala Glu Arg Thr Val Val Ile Pro Ser Ala Ile Pro
   5
                                   10
<210> SEQ ID NO 113
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
```

```
<223> OTHER INFORMATION: Peptide 103
<400> SEQUENCE: 113
Ala Glu Arg Thr Val Val Ile Pro Ser Ala Ile Pro Thr Asp Pro
<210> SEQ ID NO 114
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 104
<400> SEQUENCE: 114
Thr Val Val Ile Pro Ser Ala Ile Pro Thr Asp Pro Arg Asn Val
                                   10
<210> SEQ ID NO 115
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 105
<400> SEQUENCE: 115
Ile Pro Ser Ala Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp
1 5
                                  10
<210> SEQ ID NO 116
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 106
<400> SEQUENCE: 116
Ala Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp Leu Asp Pro
<210> SEQ ID NO 117
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 107
<400> SEQUENCE: 117
Thr Asp Pro Arg Asn Val Gly Gly Asp Leu Asp Pro Ser Ser Ile
                                   10
<210> SEQ ID NO 118
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 108
<400> SEQUENCE: 118
```

```
Arg Asn Val Gly Gly Asp Leu Asp Pro Ser Ser Ile Pro Asp Lys
   5
                                   10
<210> SEQ ID NO 119
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 109
<400> SEQUENCE: 119
Gly Gly Asp Leu Asp Pro Ser Ser Ile Pro Asp Lys Glu Gln Ala
<210> SEQ ID NO 120
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 110
<400> SEQUENCE: 120
Leu Asp Pro Ser Ser Ile Pro Asp Lys Glu Gln Ala Ile Ser Ala
                                   10
<210> SEQ ID NO 121
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 111
<400> SEQUENCE: 121
Ser Ser Ile Pro Asp Lys Glu Gln Ala Ile Ser Ala Leu Pro Asp
                                   10
<210> SEQ ID NO 122
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223 > OTHER INFORMATION: Peptide 112
<400> SEQUENCE: 122
Pro Asp Lys Glu Gln Ala Ile Ser Ala Leu Pro Asp Tyr Ala Ser
<210> SEQ ID NO 123
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 113
<400> SEQUENCE: 123
Glu Gln Ala Ile Ser Ala Leu Pro Asp Tyr Ala Ser Gln Pro Gly
1 5
                                   10
```

```
<210> SEQ ID NO 124
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 114
<400> SEQUENCE: 124
Ile Ser Ala Leu Pro Asp Tyr Ala Ser Gln Pro Gly Lys Pro Pro
<210> SEQ ID NO 125
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 115
<400> SEQUENCE: 125
Leu Pro Asp Tyr Ala Ser Gln Pro Gly Lys Pro Pro Arg Glu Asp
   5
                                    10
<210> SEQ ID NO 126
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(14)
<223> OTHER INFORMATION: Peptide 116
<400> SEQUENCE: 126
Tyr Ala Ser Gln Pro Gly Lys Pro Pro Arg Glu Asp Leu Lys
               5
<210> SEQ ID NO 127
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 117
<400> SEQUENCE: 127
Ile Thr Gly Pro Glu Glu Glu Gly Gly Arg Leu Asp Thr Ile Leu
<210> SEQ ID NO 128
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 118
<400> SEQUENCE: 128
Pro Glu Glu Glu Gly Gly Arg Leu Asp Thr Ile Leu Gly Trp Pro
               5
                                    10
<210> SEQ ID NO 129
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
```

```
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 119
<400> SEQUENCE: 129
Glu Gly Gly Arg Leu Asp Thr Ile Leu Gly Trp Pro Leu Ala Glu
<210> SEQ ID NO 130
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Peptide 120
<400> SEQUENCE: 130
Arg Leu Asp Thr Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr Val
                                   10
<210> SEQ ID NO 131
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: Hypothetical Peptide 121
<400> SEQUENCE: 131
Ile Ser Phe Ser Thr Arg Gly Thr Gln Asn Trp Thr Val Glu Arg
                                    10
<210> SEQ ID NO 132
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(16)
<223> OTHER INFORMATION: Hypothetical Peptide 122
<400> SEQUENCE: 132
Ile Val Phe Gly Gly Val Arg Ala Arg Ser Gln Asp Leu Asp Ala Ile
<210> SEQ ID NO 133
<211> LENGTH: 613
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (1) .. (613)
<223> OTHER INFORMATION: Pseudomonas Exotoxin A variant
<400> SEQUENCE: 133
Ala Glu Glu Ala Phe Asp Leu Trp Asn Glu Cys Ala Lys Ala Cys Val
Leu Asp Leu Lys Asp Gly Val Arg Ser Ser Arg Met Ser Val Asp Pro
                               25
Ala Ile Ala Asp Thr Asn Gly Gln Gly Val Leu His Tyr Ser Met Val
                           40
Leu Glu Gly Gly Asn Asp Ala Leu Lys Leu Ala Ile Asp Asn Ala Leu
                       55
```

Ser 65	Ile	Thr	Ser	Asp	Gly 70	Leu	Thr	Ile	Arg	Leu 75	Glu	Gly	Gly	Val	Glu 80
Pro	Asn	Lys	Pro	Val 85	Arg	Tyr	Ser	Tyr	Thr 90	Arg	Gln	Ala	Arg	Gly 95	Ser
Trp	Ser	Leu	Asn 100	Trp	Leu	Val	Pro	Ile 105	Gly	His	Glu	Lys	Pro 110	Ser	Asn
Ile	Lys	Val 115	Phe	Ile	His	Glu	Leu 120	Asn	Ala	Gly	Asn	Gln 125	Leu	Ser	His
Met	Ser 130	Pro	Ile	Tyr	Thr	Ile 135	Glu	Met	Gly	Asp	Glu 140	Leu	Leu	Ala	Lys
Leu 145	Ala	Arg	Asp	Ala	Thr 150	Phe	Phe	Val	Arg	Ala 155	His	Glu	Ser	Asn	Glu 160
Met	Gln	Pro	Thr	Leu 165	Ala	Ile	Ser	His	Ala 170	Gly	Val	Ser	Val	Val 175	Met
Ala	Gln	Thr	Gln 180	Pro	Arg	Arg	Glu	Lys 185	Arg	Trp	Ser	Glu	Trp 190	Ala	Ser
Gly	Lys	Val 195	Leu	Cys	Leu	Leu	Asp 200	Pro	Leu	Asp	Gly	Val 205	Tyr	Asn	Tyr
Leu	Ala 210	Gln	Gln	Arg	CÀa	Asn 215	Leu	Asp	Asp	Thr	Trp 220	Glu	Gly	Lys	Ile
Tyr 225	Arg	Val	Leu	Ala	Gly 230	Asn	Pro	Ala	Lys	His 235	Asp	Leu	Asp	Ile	Lys 240
Pro	Thr	Val	Ile	Ser 245	His	Arg	Leu	His	Phe 250	Pro	Glu	Gly	Gly	Ser 255	Leu
Ala	Ala	Leu	Thr 260	Ala	His	Gln	Ala	Сув 265	His	Leu	Pro	Leu	Glu 270	Thr	Phe
Thr	Arg	His 275	Arg	Gln	Pro	Arg	Gly 280	Trp	Glu	Gln	Leu	Glu 285	Gln	СЛв	Gly
Tyr	Pro 290	Val	Gln	Arg	Leu	Val 295	Ala	Leu	Tyr	Leu	Ala 300	Ala	Arg	Leu	Ser
Trp 305	Asn	Gln	Val	Asp	Gln 310	Val	Ile	Arg	Asn	Ala 315	Leu	Ala	Ser	Pro	Gly 320
Ser	Gly	Gly	Asp	Leu 325	Gly	Glu	Ala	Ile	Arg 330	Glu	Gln	Pro	Glu	Gln 335	Ala
Arg	Leu	Ala	Leu 340	Thr	Leu	Ala	Ala	Ala 345	Glu	Ser	Glu	Arg	Phe 350	Val	Arg
Gln	Gly	Thr 355	Gly	Asn	Asp		Ala 360		Ala	Ala	Asn	Ala 365		Val	Val
Ser	Leu 370	Thr	Cys	Pro	Val	Ala 375	Ala	Gly	Glu	Сув	Ala 380	Gly	Pro	Ala	Asp
Ser 385	Gly	Asp	Ala	Leu	Leu 390	Glu	Arg	Asn	Tyr	Pro 395	Thr	Gly	Ala	Glu	Phe 400
Leu	Gly	Asp	Gly	Gly 405	Asp	Val	Ser	Phe	Ser 410	Thr	Arg	Gly	Thr	Gln 415	Asn
Trp	Thr	Val	Glu 420	Arg	Leu	Leu	Gln	Ala 425	His	Arg	Gln	Leu	Glu 430	Glu	Arg
Gly	Tyr	Val 435	Phe	Val	Gly	Tyr	His 440	Gly	Thr	Phe	Leu	Glu 445	Ala	Ala	Gln
Ser	Ile 450	Val	Phe	Gly	Gly	Val 455	Arg	Ala	Arg	Ser	Gln 460	Asp	Leu	Asp	Ala
Ile 465	Trp	Arg	Gly	Phe	Tyr 470	Ile	Ala	Gly	Asp	Pro 475	Ala	Leu	Ala	Tyr	Gly 480
Tyr	Ala	Gln	Asp	Gln	Glu	Pro	Asp	Ala	Arg	Gly	Arg	Ile	Arg	Asn	Gly

			485					490					495	
Ala Le	u Leu	Arg 500	Val	Tyr	Val	Pro	Arg 505	Ser	Ser	Leu	Pro	Gly 510	Phe	Tyr
Arg Th	r Ser 515		Thr	Leu	Ala	Ala 520	Pro	Glu	Ala	Ala	Gly 525	Glu	Val	Glu
Arg Le		Gly	His	Pro	Leu 535	Pro	Leu	Arg	Leu	Asp 540	Ala	Ile	Thr	Gly
Pro Gl 545	u Glu	Glu	Gly	Gly 550	Arg	Leu	Glu	Thr	Ile 555	Leu	Gly	Trp	Pro	Leu 560
Ala Gl	u Arg	Thr	Val 565	Val	Ile	Pro	Ser	Ala 570	Ile	Pro	Thr	Asp	Pro 575	Arg
Asn Va	l Gly	Gly 580	Asp	Leu	Asp	Pro	Ser 585	Ser	Ile	Pro	Asp	Lys 590	Glu	Gln
Ala Il	e Ser 595		Leu	Pro	Asp	Tyr 600	Ala	Ser	Gln	Pro	Gly 605	Lys	Pro	Pro
Arg Gl 61		Leu	Lys											
<210><211><211><212><213><220><221><221><222><223>	LENGT TYPE: ORGAN FEATU NAME/ LOCAT	H: 6 PRT ISM: RE: KEY:	Pser VAR: (1)	IANT	19)		-		otox.	in A	var:	iant		
<400>	SEQUE	NCE :	134											
Asn Al	a Asp	Val	Val 5	Ser	Leu	Thr	CAa	Pro 10	Val	Ala	Ala	Gly	Glu 15	Cys
Ala Gl	y Pro	Ala 20	Asp	Ser	Gly	Asp	Ala 25	Leu	Leu	Glu	Arg	Asn 30	Tyr	Pro
Thr Gl	y Ala 35	Glu	Ala	Glu	Glu	Ala 40	Phe	Asp	Leu	Trp	Asn 45	Glu	Сув	Ala
Lys Al		Val	Leu	Asp	Leu 55	ГÀз	Asp	Gly	Val	Arg 60	Ser	Ser	Arg	Met
Ser Va	l Asp	Pro	Ala	Ile 70	Ala	Asp	Thr	Asn	Gly 75	Gln	Gly	Val	Leu	His 80
Tyr Se	r Met	Val	Leu 85	Glu	Gly	Gly	Asn	Asp 90	Ala	Leu	Lys	Leu	Ala 95	Ile
Asp As	n Ala	Leu 100	Ser	Ile	Thr	Ser	Asp 105	Gly	Leu	Thr	Ile	Arg 110	Leu	Glu
Gly Gl	y Val 115		Pro	Asn	Lys	Pro 120	Val	Arg	Tyr	Ser	Tyr 125	Thr	Arg	Gln
Ala Ar 13		Ser	Trp	Ser	Leu 135	Asn	Trp	Leu	Val	Pro 140	Ile	Gly	His	Glu
Lys Pr 145	o Ser	Asn	Ile	150	Val	Phe	Ile	His	Glu 155	Leu	Asn	Ala	Gly	Asn 160
Gln Le	u Ser	His	Met 165	Ser	Pro	Ile	Tyr	Thr 170	Ile	Glu	Met	Gly	Asp 175	Glu
Leu Le	u Ala	Lys 180	Leu	Ala	Arg	Asp	Ala 185	Thr	Phe	Phe	Val	Arg 190	Ala	His
Glu Se	r Asn 195		Met	Gln	Pro	Thr 200	Leu	Ala	Ile	Ser	His 205	Ala	Gly	Val
Ser Va		Met	Ala	Gln	Thr 215	Gln	Pro	Arg	Arg	Glu 220	Lys	Arg	Trp	Ser

Glu 225	Trp	Ala	Ser	Gly	Lys 230	Val	Leu	Сув	Leu	Leu 235	Asp	Pro	Leu	Asp	Gly 240
Val	Tyr	Asn	Tyr	Leu 245	Ala	Gln	Gln	Arg	Сув 250	Asn	Leu	Asp	Asp	Thr 255	Trp
Glu	Gly	Lys	Ile 260	Tyr	Arg	Val	Leu	Ala 265	Gly	Asn	Pro	Ala	Lys 270	His	Asp
Leu	Asp	Ile 275	Lys	Pro	Thr	Val	Ile 280	Ser	His	Arg	Leu	His 285	Phe	Pro	Glu
Gly	Gly 290	Ser	Leu	Ala	Ala	Leu 295	Thr	Ala	His	Gln	Ala 300	СЛа	His	Leu	Pro
Leu 305	Glu	Thr	Phe	Thr	Arg 310	His	Arg	Gln	Pro	Arg 315	Gly	Trp	Glu	Gln	Leu 320
Glu	Gln	Сла	Gly	Tyr 325	Pro	Val	Gln	Arg	Leu 330	Val	Ala	Leu	Tyr	Leu 335	Ala
Ala	Arg	Leu	Ser 340	Trp	Asn	Gln	Val	Asp 345	Gln	Val	Ile	Arg	Asn 350	Ala	Leu
Ala	Ser	Pro 355	Gly	Ser	Gly	Gly	Asp	Leu	Gly	Glu	Ala	Ile 365	Arg	Glu	Gln
Pro	Glu 370	Gln	Ala	Arg	Leu	Ala 375	Leu	Thr	Leu	Ala	Ala 380	Ala	Glu	Ser	Glu
Arg 385	Phe	Val	Arg	Gln	Gly 390	Thr	Gly	Asn	Asp	Glu 395	Ala	Gly	Ala	Ala	Ser 400
Ala	Asp	Val	Val	Ser 405	Leu	Thr	Cys	Pro	Val 410	Ala	Ala	Gly	Glu	Cys 415	Ala
Gly	Pro	Ala	Asp 420	Asn	Gly	Asp	Ala	Leu 425	Leu	Glu	Arg	Asn	Tyr 430	Pro	Thr
Gly	Ala	Glu 435	Phe	Leu	Gly	Asp	Gly 440	Gly	Asp	Ile	Ser	Phe 445	Ser	Thr	Arg
Gly	Thr 450	Gln	Asn	Trp	Thr	Val 455	Glu	Arg	Leu	Leu	Gln 460	Ala	His	Arg	Gln
Leu 465	Glu	Glu	Arg	Gly	Tyr 470	Val	Phe	Val	Gly	Tyr 475	His	Gly	Thr	Phe	Leu 480
Glu	Ala	Ala	Gln	Ser 485	Ile	Val	Phe	Gly	Gly 490	Val	Arg	Ala	Arg	Ser 495	Gln
Asp	Leu	Asp	Ala 500	Ile	Trp	Arg	Gly	Phe 505	Tyr	Ile	Ala	Gly	Asp 510	Pro	Ala
Leu	Ala	Tyr 515	Gly	Tyr	Ala	Gln	Asp 520	Gln	Glu	Pro	Asp	Ala 525	Arg	Gly	Arg
Ile	Arg 530	Asn	Gly	Ala	Leu	Leu 535	Arg	Val	Tyr	Val	Pro 540	Arg	Ser	Ser	Leu
Pro 545	Gly	Phe	Tyr	Arg	Thr 550	Gly	Leu	Thr	Leu	Ala 555	Ala	Pro	Glu	Ala	Ala 560
Gly	Glu	Val	Glu	Arg 565	Leu	Ile	Gly	His	Pro 570	Leu	Pro	Leu	Arg	Leu 575	Asp
Ala	Ile	Thr	Gly 580	Pro	Glu	Glu	Glu	Gly 585	Gly	Arg	Leu	Glu	Thr 590	Ile	Leu
Gly	Trp	Pro 595	Leu	Ala	Glu	Arg	Thr 600	Val	Val	Ile	Pro	Ser 605	Ala	Ile	Pro
Thr	Asp 610	Pro	Arg	Asn	Val	Gly 615	Gly	Asp	Leu	Asp	Pro 620	Ser	Ser	Ile	Pro
Asp 625	Lys	Glu	Gln	Ala	Ile 630	Ser	Ala	Leu	Pro	Asp 635	Tyr	Ala	Ser	Gln	Pro 640

```
Gly Lys Pro Pro Arg Glu Asp Leu Lys
               645
<210> SEQ ID NO 135
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (1)..(5)
<223> OTHER INFORMATION: Alternative carboxy terminal tail
<400> SEQUENCE: 135
Arg Glu Asp Leu Lys
<210> SEQ ID NO 136
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (1)..(4)
<223> OTHER INFORMATION: Alternative carboxy terminal tail
<400> SEQUENCE: 136
Arg Glu Asp Leu
<210> SEQ ID NO 137
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (1)..(4)
<223> OTHER INFORMATION: Alternative carboxy terminal tail
<400> SEQUENCE: 137
Lys Asp Glu Leu
<210> SEQ ID NO 138
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (1) .. (16)
<223> OTHER INFORMATION: alternative amino terminal portion of Domain IB
<400> SEQUENCE: 138
Ala Asp Val Val Ser Leu Thr Cys Pro Val Ala Ala Gly Glu Cys Ala
<210> SEQ ID NO 139
<211> LENGTH: 35
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (1)..(35)
<223> OTHER INFORMATION: Domain IB
<400> SEQUENCE: 139
Ala Asp Val Val Ser Leu Thr Cys Pro Val Ala Ala Gly Glu Cys Ala
               5
                                    10
Gly Pro Ala Asp Ser Gly Asp Ala Leu Leu Glu Arg Asn Tyr Pro Thr
```

```
20
                                25
                                                     30
Gly Ala Glu
        35
<210> SEQ ID NO 140
<211> LENGTH: 17
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Response element for ecdysone receptor
<221> NAME/KEY: misc_feature
<222> LOCATION: (9)..(9)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 140
                                                                       17
rrggttcant gacacyy
<210> SEQ ID NO 141
<211> LENGTH: 14
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Ecdysone receptor response element
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (7)..(8)
<223> OTHER INFORMATION: nn at positions 7-8 is to indicate any number
      of spacer nucleotides
<400> SEQUENCE: 141
                                                                       14
aggtcannag gtca
<210> SEQ ID NO 142
<211> LENGTH: 15
<212> TYPE: DNA
<213> ORGANISM: Unknown
<220> FEATURE:
<223> OTHER INFORMATION: ecdysone receptor response element
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(15)
<223> OTHER INFORMATION: ecdysone receptor response element
<400> SEQUENCE: 142
gggttgaatg aattt
                                                                       15
<210> SEQ ID NO 143
<211> LENGTH: 638
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (1)..(638)
<223> OTHER INFORMATION: Pseudomonas Exotoxin A variant
<400> SEQUENCE: 143
Met His Leu Ile Pro His Trp Ile Pro Leu Val Ala Ser Leu Gly Leu
Leu Ala Gly Gly Ser Ser Ala Ser Ala Ala Glu Glu Ala Phe Asp Leu
Trp Asn Glu Cys Ala Lys Ala Cys Val Leu Asp Leu Lys Asp Gly Val
Arg Ser Ser Arg Met Ser Val Asp Pro Ala Ile Ala Asp Thr Asn Gly
                        55
Gln Gly Val Leu His Tyr Ser Met Val Leu Glu Gly Gly Asn Asp Ala
```

65					70					75					80
Leu	Lys	Leu	Ala	Ile 85	Asp	Asn	Ala	Leu	Ser 90	Ile	Thr	Ser	Asn	Gly 95	Leu
Thr	Ile	Arg	Leu 100	Glu	Gly	Gly	Val	Glu 105	Pro	Asn	ГÀз	Pro	Val 110	Arg	Tyr
Ser	Tyr	Thr 115	Arg	Gln	Ala	Arg	Gly 120	Ser	Trp	Ser	Leu	Asn 125	Trp	Leu	Val
Pro	Ile 130	Gly	His	Glu	Lys	Pro 135	Ser	Asn	Ile	Lys	Val 140	Phe	Ile	His	Glu
Leu 145	Asn	Ala	Gly	Asn	Gln 150	Leu	Ser	His	Met	Ser 155	Pro	Ile	Tyr	Thr	Ile 160
Glu	Met	Gly	Asp	Glu 165	Leu	Leu	Ala	Lys	Leu 170	Ala	Arg	Asp	Ala	Thr 175	Phe
Phe	Val	Arg	Ala 180	His	Glu	Ser	Asn	Glu 185	Met	Gln	Pro	Thr	Leu 190	Ala	Ile
Ser	His	Ala 195	Gly	Val	Ser	Val	Val 200	Met	Ala	Gln	Ala	Gln 205	Pro	Arg	Arg
Glu	Lys 210	Arg	Trp	Ser	Glu	Trp 215	Ala	Ser	Gly	Lys	Val 220	Leu	Cys	Leu	Leu
Asp 225	Pro	Leu	Asp	Gly	Val 230	Tyr	Asn	Tyr	Leu	Ala 235	Gln	Gln	Arg	CÀa	Asn 240
Leu	Asp	Asp	Thr	Trp 245	Glu	Gly	Lys	Ile	Tyr 250	Arg	Val	Leu	Ala	Gly 255	Asn
Pro	Ala	Lys	His 260	Asp	Leu	Asp	Ile	Lys 265	Pro	Thr	Val	Ile	Ser 270	His	Arg
Leu	His	Phe 275	Pro	Glu	Gly	Gly	Ser 280	Leu	Ala	Ala	Leu	Thr 285	Ala	His	Gln
Ala	Сув 290	His	Leu	Pro	Leu	Glu 295	Thr	Phe	Thr	Arg	His 300	Arg	Gln	Pro	Arg
Gly 305	Trp	Glu	Gln	Leu	Glu 310	Gln	Cys	Gly	Tyr	Pro 315	Val	Gln	Arg	Leu	Val 320
Ala	Leu	Tyr	Leu	Ala 325	Ala	Arg	Leu	Ser	Trp 330	Asn	Gln	Val	Asp	Gln 335	Val
Ile	Arg	Asn	Ala 340	Leu	Ala	Ser	Pro	Gly 345	Ser	Gly	Gly	Asp	Leu 350	Gly	Glu
Ala	Ile	Arg 355	Glu	Gln	Pro	Glu	Gln 360	Ala	Arg	Leu	Ala	Leu 365	Thr	Leu	Ala
Ala	Ala 370	Glu	Ser	Glu	Arg	Phe 375	Val	Arg	Gln	Gly	Thr 380	Gly	Asn	Asp	Glu
Ala 385	Gly	Ala	Ala	Ser	Ala 390	Asp	Val	Val	Ser	Leu 395	Thr	Cys	Pro	Val	Ala 400
Ala	Gly	Glu	Cys	Ala 405	Gly	Pro	Ala	Asp	Ser 410	Gly	Asp	Ala	Leu	Leu 415	Glu
Arg	Asn	Tyr	Pro 420	Thr	Gly	Ala	Glu	Phe 425	Leu	Gly	Asp	Gly	Gly 430	Asp	Ile
Ser	Phe	Ser 435	Thr	Arg	Gly	Thr	Gln 440	Asn	Trp	Thr	Val	Glu 445	Arg	Leu	Leu
Gln	Ala 450	His	Arg	Gln	Leu	Glu 455	Glu	Arg	Gly	Tyr	Val 460	Phe	Val	Gly	Tyr
His 465	Gly	Thr	Phe	Leu	Glu 470	Ala	Ala	Gln	Ser	Ile 475	Val	Phe	Gly	Gly	Val 480
Arg	Ala	Arg	Ser	Gln 485	Asp	Leu	Asp	Ala	Ile 490	Trp	Arg	Gly	Phe	Tyr 495	Ile

Ala Gly Asp Pro Ala Leu Ala Tyr Gly Tyr Ala Gln Asp Gln Glu Pro Asp Ala Arg Gly Arg Ile Arg Asn Gly Ala Leu Leu Arg Val Tyr Val 520 Pro Arg Ser Ser Leu Pro Gly Phe Tyr Arg Thr Gly Leu Thr Leu Ala Ala Pro Glu Ala Ala Gly Glu Val Glu Arg Leu Ile Gly His Pro Leu Pro Leu Arg Leu Asp Ala Ile Thr Gly Pro Glu Glu Glu Gly Gly Arg Leu Glu Thr Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr Val Val Ile Pro Ser Ala Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp Leu Asp Pro Ser Ser Ile Pro Asp Lys Glu Gln Ala Ile Ser Ala Leu Pro Asp 610 615 Tyr Ala Ser Gln Pro Gly Lys Pro Pro Arg Glu Asp Leu Lys 630 <210> SEO ID NO 144 <211> LENGTH: 613 <212> TYPE: PRT <213> ORGANISM: Pseudomonas aeruginosa <220> FEATURE: <221> NAME/KEY: VARIANT <222> LOCATION: (1)..(613) <223> OTHER INFORMATION: PE variant <400> SEQUENCE: 144 Ala Glu Glu Ala Phe Asp Leu Trp Asn Glu Cys Ala Lys Ala Cys Val Leu Asp Leu Lys Asp Gly Val Arg Ser Ser Arg Met Ser Val Asp Pro 25 Ala Ile Ala Asp Thr Asn Gly Gln Gly Val Leu His Tyr Ser Met Val Leu Glu Gly Gly Asn Asp Ala Leu Lys Leu Ala Ile Asp Asn Ala Leu Ser Ile Thr Ser Asp Gly Leu Thr Ile Arg Leu Glu Gly Gly Val Glu Pro Asn Lys Pro Val Arg Tyr Ser Tyr Thr Arg Gln Ala Arg Gly Ser Trp Ser Leu Asn Trp Leu Val Pro Ile Gly His Glu Lys Pro Ser Asn Ile Lys Val Phe Ile His Glu Leu Asn Ala Gly Asn Gln Leu Ser His Met Ser Pro Ile Tyr Thr Ile Glu Met Gly Asp Glu Leu Leu Ala Lys 135 Leu Ala Arg Asp Ala Thr Phe Phe Val Arg Ala His Glu Ser Asn Glu 150 Met Gln Pro Thr Leu Ala Ile Ser His Ala Gly Val Ser Val Val Met 170 Ala Gln Ala Gln Pro Arg Arg Glu Lys Arg Trp Ser Glu Trp Ala Ser 185 Gly Lys Val Leu Cys Leu Leu Asp Pro Leu Asp Gly Val Tyr Asn Tyr 200

Leu	Ala 210	Gln	Gln	Arg	Cha	Asn 215	Leu	Asp	Asp	Thr	Trp 220	Glu	Gly	Lys	Ile
Tyr 225	Arg	Val	Leu	Ala	Gly 230	Asn	Pro	Ala	Lys	His 235	Asp	Leu	Asp	Ile	Lys 240
Pro	Thr	Val	Ile	Ser 245	His	Arg	Leu	His	Phe 250	Pro	Glu	Gly	Gly	Ser 255	Leu
Ala	Ala	Leu	Thr 260	Ala	His	Gln	Ala	Сув 265	His	Leu	Pro	Leu	Glu 270	Thr	Phe
Thr	Arg	His 275	Arg	Gln	Pro	Arg	Gly 280	Trp	Glu	Gln	Leu	Glu 285	Gln	Сув	Gly
Tyr	Pro 290	Val	Gln	Arg	Leu	Val 295	Ala	Leu	Tyr	Leu	Ala 300	Ala	Arg	Leu	Ser
Trp 305	Asn	Gln	Val	Asp	Gln 310	Val	Ile	Arg	Asn	Ala 315	Leu	Ala	Ser	Pro	Gly 320
Ser	Gly	Gly	Asp	Leu 325	Gly	Glu	Ala	Ile	Arg 330	Glu	Gln	Pro	Glu	Gln 335	Ala
Arg	Leu	Ala	Leu 340	Thr	Leu	Ala	Ala	Ala 345	Glu	Ser	Glu	Arg	Phe 350	Val	Arg
Gln	Gly	Thr 355	Gly	Asn	Asp	Glu	Ala 360	Gly	Ala	Ala	Ser	Ala 365	Asp	Val	Val
Ser	Leu 370	Thr	CAa	Pro	Val	Ala 375	Ala	Gly	Glu	Cys	Ala 380	Gly	Pro	Ala	Asp
Ser 385	Gly	Asp	Ala	Leu	Leu 390	Glu	Arg	Asn	Tyr	Pro 395	Thr	Gly	Ala	Glu	Phe 400
Leu	Gly	Asp	Gly	Gly 405	Asp	Ile	Ser	Phe	Ser 410	Thr	Arg	Gly	Thr	Gln 415	Asn
Trp	Thr	Val	Glu 420	Arg	Leu	Leu	Gln	Ala 425	His	Arg	Gln	Leu	Glu 430	Glu	Arg
Gly	Tyr	Val 435	Phe	Val	Gly	Tyr	His 440	Gly	Thr	Phe	Leu	Glu 445	Ala	Ala	Gln
Ser	Ile 450	Val	Phe	Gly	Gly	Val 455	Arg	Ala	Arg	Ser	Gln 460	Asp	Leu	Asp	Ala
Ile 465	Trp	Arg	Gly	Phe	Tyr 470	Ile	Ala	Gly	Asp	Pro 475	Ala	Leu	Ala	Tyr	Gly 480
Tyr	Ala	Gln	Asp	Gln 485	Glu	Pro	Asp	Ala	Arg 490	Gly	Arg	Ile	Arg	Asn 495	Gly
Ala	Leu		Arg 500		Tyr	Val		Arg 505		Ser	Leu	Pro	Gly 510		Tyr
Arg	Thr	Gly 515	Leu	Thr	Leu	Ala	Ala 520	Pro	Glu	Ala	Ala	Gly 525	Glu	Val	Glu
Arg	Leu 530	Ile	Gly	His	Pro	Leu 535	Pro	Leu	Arg	Leu	Asp 540	Ala	Ile	Thr	Gly
Pro 545	Glu	Glu	Glu	Gly	Gly 550	Arg	Leu	Glu	Thr	Ile 555	Leu	Gly	Trp	Pro	Leu 560
Ala	Glu	Arg	Thr	Val 565	Val	Ile	Pro	Ser	Ala 570	Ile	Pro	Thr	Asp	Pro 575	Arg
Asn	Val	Gly	Gly 580	Asp	Leu	Asp	Pro	Ser 585	Ser	Ile	Pro	Asp	Lys 590	Glu	Gln
Ala	Ile	Ser 595	Ala	Leu	Pro	Asp	Tyr 600	Ala	Ser	Gln	Pro	Gly 605	Lys	Pro	Pro
Arg	Glu 610	Asp	Leu	Lys											

```
<210> SEQ ID NO 145
<211> LENGTH: 318
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (1)..(318)
<223> OTHER INFORMATION: PE variant
<400> SEQUENCE: 145
Met Trp Glu Gln Leu Glu Gln Ser Gly Tyr Pro Val Gln Arg Leu Val
Ala Leu Tyr Leu Ala Ala Arg Leu Ser Trp Asn Gln Val Asp Gln Val
Ile Arg Asn Ala Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu Gly Glu
Ala Ile Arg Glu Gln Pro Glu Gln Ala Arg Leu Ala Leu Thr Leu Ala
Ala Ala Glu Ser Glu Arg Phe Val Arg Gln Gly Thr Gly Asn Asp Glu
Ala Gly Ala Ala Ser Gly Pro Ala Asp Ser Gly Asp Ala Leu Leu Glu
Arg Asn Tyr Pro Thr Gly Ala Glu Phe Leu Gly Asp Gly Gly Asp Ile
                              105
Ser Phe Ser Thr Arg Gly Thr Gln Asn Trp Thr Val Glu Arg Leu Leu
Gln Ala His Arg Gln Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr
                     135
His Gly Thr Phe Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val
                 150
                                     155
Arg Ala Arg Ser Gln Asp Leu Asp Ala Ile Trp Arg Gly Phe Tyr Ile
                                 170
Ala Gly Asp Pro Ala Leu Ala Tyr Gly Tyr Ala Gln Asp Gln Glu Pro
Asp Ala Arg Gly Arg Ile Arg Asn Gly Ala Leu Leu Arg Val Tyr Val
                           200
Pro Arg Ser Ser Leu Pro Gly Phe Tyr Arg Thr Gly Leu Thr Leu Ala
Ala Pro Glu Ala Ala Gly Glu Val Glu Arg Leu Ile Gly His Pro Leu
Pro Leu Arg Leu Asp Ala Ile Thr Gly Pro Glu Glu Glu Gly Gly Arg
Leu Glu Thr Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr Val Val Ile
Pro Ser Ala Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp Leu Asp
                   280
Pro Ser Ser Ile Pro Asp Lys Glu Gln Ala Ile Ser Ala Leu Pro Asp
Tyr Ala Ser Gln Pro Gly Lys Pro Pro Arg Glu Asp Leu Lys
305 310
<210> SEQ ID NO 146
<211> LENGTH: 613
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (1) .. (613)
```

											_	con	tını	uea	
<223	3 > O	THER	INF	ORMA'	rion	: PE	var:	Lant							
< 400	O> SI	EQUEI	ICE :	146											
Ala 1	Glu	Glu	Ala	Phe 5	Asp	Leu	Trp	Asn	Glu 10	Сув	Ala	ГÀа	Ala	Суs 15	Val
Leu	Asp	Leu	Lys 20	Asp	Gly	Val	Arg	Ser 25	Ser	Arg	Met	Ser	Val 30	Asp	Pro
Ala	Ile	Ala 35	Asp	Thr	Asn	Gly	Gln 40	Gly	Val	Leu	His	Tyr 45	Ser	Met	Val
Leu	Glu 50	Gly	Gly	Asn	Asp	Ala 55	Leu	Lys	Leu	Ala	Ile 60	Asp	Asn	Ala	Leu
Ser 65	Ile	Thr	Ser	Asp	Gly 70	Leu	Thr	Ile	Arg	Leu 75	Glu	Gly	Gly	Val	Glu 80
Pro	Asn	Lys	Pro	Val 85	Arg	Tyr	Ser	Tyr	Thr 90	Arg	Gln	Ala	Arg	Gly 95	Ser
Trp	Ser	Leu	Asn 100	Trp	Leu	Val	Pro	Ile 105	Gly	His	Glu	ГÀа	Pro 110	Ser	Asn
Ile	Lys	Val 115	Phe	Ile	His	Glu	Leu 120	Asn	Ala	Gly	Asn	Gln 125	Leu	Ser	His
Met	Ser 130	Pro	Ile	Tyr	Thr	Ile 135	Glu	Met	Gly	Asp	Glu 140	Leu	Leu	Ala	Lys
Leu 145	Ala	Arg	Asp	Ala	Thr 150	Phe	Phe	Val	Arg	Ala 155	His	Glu	Ser	Asn	Glu 160
Met	Gln	Pro	Thr	Leu 165	Ala	Ile	Ser	His	Ala 170	Gly	Val	Ser	Val	Val 175	Met
Ala	Gln	Ala	Gln 180	Pro	Arg	Arg	Glu	Lys 185	Arg	Trp	Ser	Glu	Trp 190	Ala	Ser
Gly	ГÀа	Val 195	Leu	СЛа	Leu	Leu	Asp 200	Pro	Leu	Asp	Gly	Val 205	Tyr	Asn	Tyr
Leu	Ala 210	Gln	Gln	Arg	CAa	Asn 215	Leu	Asp	Asp	Thr	Trp 220	Glu	Gly	ГÀз	Ile
Tyr 225	Arg	Val	Leu	Ala	Gly 230	Asn	Pro	Ala	ГЛа	His 235	Asp	Leu	Asp	Ile	Lys 240
Pro	Thr	Val	Ile	Ser 245	His	Arg	Leu	His	Phe 250	Pro	Glu	Gly	Gly	Ser 255	Leu
Ala	Ala	Leu	Thr 260	Ala	His	Gln	Ala	Cys 265	His	Leu	Pro	Leu	Glu 270	Thr	Phe
Thr	Arg	His 275	Arg	Gln	Pro	Arg	Gly 280	Trp	Glu	Gln	Leu	Glu 285	Gln	Càa	Gly
Tyr	Pro 290	Val	Gln	Arg	Leu	Val 295	Ala	Leu	Tyr	Leu	Ala 300	Ala	Arg	Leu	Ser
Trp 305	Asn	Gln	Val	Asp	Gln 310	Val	Ile	Arg	Asn	Ala 315	Leu	Ala	Ser	Pro	Gly 320
Ser	Gly	Gly	Asp	Leu 325	Gly	Glu	Ala	Ile	Arg 330	Glu	Gln	Pro	Glu	Gln 335	Ala
Arg	Leu	Ala	Leu 340	Thr	Leu	Ala	Ala	Ala 345	Glu	Ser	Glu	Arg	Phe 350	Val	Arg
Gln	Gly	Thr 355	Gly	Asn	Asp	Glu	Ala 360	Gly	Ala	Ala	Ser	Ala 365	Asp	Val	Val
Ser	Leu 370	Thr	Сув	Pro	Val	Ala 375	Ala	Gly	Glu	Сув	Ala 380	Gly	Pro	Ala	Asp
Ser 385	Gly	Asp	Ala	Leu	Leu 390	Glu	Arg	Asn	Tyr	Pro 395	Thr	Gly	Ala	Glu	Phe 400

```
Leu Gly Asp Gly Gly Asp Ile Ser Phe Ser Thr Arg Gly Thr Gln Asn
                405
                                     410
Trp Thr Val Glu Arg Leu Leu Gln Ala His Arg Gln Leu Glu Glu Arg
Gly Tyr Val Phe Val Gly Tyr His Gly Thr Phe Leu Glu Ala Ala Gln
Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser Gln Asp Leu Asp Ala
Ile Trp Arg Gly Phe Tyr Ile Ala Gly Asp Pro Ala Leu Ala Tyr Gly 465 \phantom{\bigg|}470\phantom{\bigg|}475\phantom{\bigg|}475\phantom{\bigg|}475\phantom{\bigg|}
Tyr Ala Gln Asp Gln Glu Pro Asp Ala Arg Gly Arg Ile Arg Asn Gly
Ala Leu Leu Arg Val Tyr Val Pro Arg Ser Ser Leu Pro Gly Phe Tyr
Arg Thr Gly Leu Thr Leu Ala Ala Pro Glu Ala Ala Gly Glu Val Glu
Arg Leu Ile Gly His Pro Leu Pro Leu Arg Leu Asp Ala Ile Thr Gly
Pro Glu Glu Glu Gly Gly Arg Leu Glu Thr Ile Leu Gly Trp Pro Leu
Ala Glu Arg Thr Val Val Ile Pro Ser Ala Ile Pro Thr Asp Pro Arg
                           570
Asn Val Gly Gly Asp Leu Asp Pro Ser Ser Ile Pro Asp Lys Glu Gln
                            585
Ala Ile Ser Ala Leu Pro Asp Tyr Ala Ser Gln Pro Gly Lys Pro Pro
Arg Glu Asp Leu Lys
   610
<210> SEQ ID NO 147
<211> LENGTH: 613
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (1)..(613)
<400> SEQUENCE: 147
Ala Glu Glu Ala Phe Asp Leu Trp Asn Glu Cys Ala Lys Ala Cys Val
Leu Asp Leu Lys Asp Gly Val Arg Ser Ser Arg Met Ser Val Asp Pro
Ala Ile Ala Asp Thr Asn Gly Gln Gly Val Leu His Tyr Ser Met Val
Leu Glu Gly Gly Asn Asp Ala Leu Lys Leu Ala Ile Asp Asn Ala Leu
Ser Ile Thr Ser Asp Gly Leu Thr Ile Arg Leu Glu Gly Gly Val Glu
Pro Asn Lys Pro Val Arg Tyr Ser Tyr Thr Arg Gln Ala Arg Gly Ser
Trp Ser Leu Asn Trp Leu Val Pro Ile Gly His Glu Lys Pro Ser Asn
                                 105
Ile Lys Val Phe Ile His Glu Leu Asn Ala Gly Asn Gln Leu Ser His
                            120
Met Ser Pro Ile Tyr Thr Ile Glu Met Gly Asp Glu Leu Leu Ala Lys
                     135
                                            140
```

Leu	Ala	Arg	Asp	Ala	Thr	Phe	Phe	Val	Arg	Ala	His	Glu	Ser	Asn	Glu
145	er3	_		_	150					155					160
Met	Gln	Pro	Thr	Leu 165	Ala	He	ser	Hls	170	GIŸ	Val	Ser	Val	175	Met
Ala	Gln	Ala	Gln 180	Pro	Arg	Arg	Glu	Lys 185	Arg	Trp	Ser	Glu	Trp 190	Ala	Ser
Gly	Lys	Val 195	Leu	CAa	Leu	Leu	Asp 200	Pro	Leu	Asp	Gly	Val 205	Tyr	Asn	Tyr
Leu	Ala 210	Gln	Gln	Arg	CAa	Asn 215	Leu	Asp	Asp	Thr	Trp 220	Glu	Gly	ГÀа	Ile
Tyr 225	Arg	Val	Leu	Ala	Gly 230	Asn	Pro	Ala	Lys	His 235	Asp	Leu	Asp	Ile	Lys 240
Pro	Thr	Val	Ile	Ser 245	His	Arg	Leu	His	Phe 250	Pro	Glu	Gly	Gly	Ser 255	Leu
Ala	Ala	Leu	Thr 260	Ala	His	Gln	Ala	Cys 265	His	Leu	Pro	Leu	Glu 270	Thr	Phe
Thr	Arg	His 275	Arg	Gln	Pro	Arg	Gly 280	Trp	Glu	Gln	Leu	Glu 285	Gln	Cys	Gly
Tyr	Pro 290	Val	Gln	Arg	Leu	Val 295	Ala	Leu	Tyr	Leu	Ala 300	Ala	Arg	Leu	Ser
Trp 305	Asn	Gln	Val	Asp	Gln 310	Val	Ile	Arg	Asn	Ala 315	Leu	Ala	Ser	Pro	Gly 320
Ser	Gly	Gly	Asp	Leu 325	Gly	Glu	Ala	Ile	Arg 330	Glu	Gln	Pro	Glu	Gln 335	Ala
Arg	Leu	Ala	Leu 340	Thr	Leu	Ala	Ala	Ala 345	Glu	Ser	Glu	Arg	Phe 350	Val	Arg
Gln	Gly	Thr 355	Gly	Asn	Asp	Glu	Ala 360	Gly	Ala	Ala	Ser	Ala 365	Asp	Val	Val
Ser	Leu 370	Thr	CAa	Pro	Val	Ala 375	Ala	Gly	Glu	Сла	Ala 380	Gly	Pro	Ala	Asp
Ser 385	Gly	Asp	Ala	Leu	Leu 390	Glu	Arg	Asn	Tyr	Pro 395	Thr	Gly	Ala	Glu	Phe 400
Leu	Gly	Asp	Gly	Gly 405	Asp	Ile	Ser	Phe	Ser 410	Thr	Arg	Gly	Thr	Gln 415	Asn
Trp	Thr	Val	Glu 420	Arg	Leu	Leu	Gln	Ala 425	His	Arg	Gln	Leu	Glu 430	Glu	Arg
Gly	Tyr	Val 435	Phe	Val	Gly	Tyr	His 440	Gly	Thr	Phe	Leu	Glu 445	Ala	Ala	Gln
Ser	Ile 450	Val	Phe	Gly	Gly	Val 455	Arg	Ala	Arg	Ser	Gln 460	Asp	Leu	Asp	Ala
Ile 465	Trp	Arg	Gly	Phe	Tyr 470	Ile	Ala	Gly	Asp	Pro 475	Ala	Leu	Ala	Tyr	Gly 480
Tyr	Ala	Gln	Asp	Gln 485	Glu	Pro	Asp	Ala	Arg 490	Gly	Arg	Ile	Arg	Asn 495	Gly
Ala	Leu	Leu	Arg 500	Val	Tyr	Val	Pro	Arg 505	Ser	Ser	Leu	Pro	Gly 510	Phe	Tyr
Arg	Thr	Gly 515	Leu	Thr	Leu	Ala	Ala 520	Pro	Glu	Ala	Ala	Gly 525	Glu	Val	Glu
Arg	Leu 530	Ile	Gly	His	Pro	Leu 535	Pro	Leu	Arg	Leu	Asp 540	Ala	Ile	Thr	Gly
Pro 545	Glu	Glu	Glu	Gly	Gly 550	Arg	Leu	Glu	Thr	Ile 555	Leu	Gly	Trp	Pro	Leu 560

-continued

Ala Glu Arg Thr Val Val Ile Pro Ser Ala Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp Leu Asp Pro Ser Ser Ile Pro Asp Gln Glu Gln 585 Ala Ile Ser Ala Leu Pro Asp Tyr Ala Ser Gln Pro Gly Gln Pro Pro 600 Arg Glu Asp Leu Arg <210> SEQ ID NO 148 <211> LENGTH: 346 <212> TYPE: PRT <213 > ORGANISM: Pseudomonas aeruginosa <220> FEATURE: <221> NAME/KEY: VARIANT <222> LOCATION: (1)..(346) <223> OTHER INFORMATION: PE variant <400> SEQUENCE: 148 Met Gly Gly Ser Leu Ala Ala Leu Thr Ala His Gln Ala Cys His Leu Pro Leu Glu Thr Phe Thr Arg His Arg Gln Pro Arg Gly Trp Glu Gln Leu Glu Gln Cys Gly Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr Leu 40 Ala Ala Arg Leu Ser Trp Asn Gln Val Asp Gln Val Ile Arg Asn Ala 55 Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg Glu Gln Pro Glu Gln Ala Arg Leu Ala Leu Thr Leu Ala Ala Ala Glu Ser Glu Arg Phe Val Arg Gln Gly Thr Gly Asn Asp Glu Ala Gly Ala Ala 105 Ser Gly Pro Ala Asp Ser Gly Asp Ala Leu Leu Glu Arg Asn Tyr Pro Thr Gly Ala Glu Phe Leu Gly Asp Gly Gly Asp Ile Ser Phe Ser Thr Arg Gly Thr Gln Asn Trp Thr Val Glu Arg Leu Leu Gln Ala His Arg Gln Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr His Gly Thr Phe Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser Gln Asp Leu Asp Ala Ile Trp Arg Gly Phe Tyr Ile Ala Gly Asp Pro Ala Leu Ala Tyr Gly Tyr Ala Gln Asp Gln Glu Pro Asp Ala Arg Gly Arg Ile Arg Asn Gly Ala Leu Leu Arg Val Tyr Val Pro Arg Ser Ser 230 Leu Pro Gly Phe Tyr Arg Thr Gly Leu Thr Leu Ala Ala Pro Glu Ala 250 Ala Gly Glu Val Glu Arg Leu Ile Gly His Pro Leu Pro Leu Arg Leu 265 Asp Ala Ile Thr Gly Pro Glu Glu Glu Gly Gly Arg Leu Glu Thr Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr Val Val Ile Pro Ser Ala Ile

	290					295					300				
Pro 305	Thr	Asp	Pro	Arg	Asn 310	Val	Gly	Gly	Asp	Leu 315	Asp	Pro	Ser	Ser	Ile 320
Pro	Asp	Gln	Glu	Gln 325	Ala	Ile	Ser	Ala	Leu 330	Pro	Asp	Tyr	Ala	Ser 335	Gln
Pro	Gly	Gln	Pro 340	Pro	Arg	Glu	Asp	Leu 345	Arg						
<211 <212 <213 <220 <221 <222 <223 <223 <221 <222)> FI 1> NA 2> LO 3> O 5 1> NA 10 10 10 10 10 10 10 10 10 10	ENGTH PE: RGANI RGANI RATUF AME/F CATIF CATIF CATIF CHER	H: 6: PRT SM: SE: ON: INF SE: ON: INF SE: INF AA III	VARI VARI (1) DRMAI VARI (1) DRMAI 1-25	IANT . (62 FION: IANT . (62 FION: 52 ar 350	13) : PE 13) : To	var: use 55-38	iant for 30; a	fusi	of do	omair	n IB	and	port	erminus, ion of 1 GGGGS
< 400)> SI	EQUE	ICE:	149											
Ala 1	Glu	Glu	Ala	Phe 5	Asp	Leu	Trp	Asn	Glu 10	CÀa	Ala	ГÀа	Ala	Суя 15	Val
Leu	Asp	Leu	Lys 20	Asp	Gly	Val	Arg	Ser 25	Ser	Arg	Met	Ser	Val 30	Asp	Pro
Ala	Ile	Ala 35	Asp	Thr	Asn	Gly	Gln 40	Gly	Val	Leu	His	Tyr 45	Ser	Met	Val
Leu	Glu 50	Gly	Gly	Asn	Asp	Ala 55	Leu	Lys	Leu	Ala	Ile 60	Asp	Asn	Ala	Leu
Ser 65	Ile	Thr	Ser	Asp	Gly 70	Leu	Thr	Ile	Arg	Leu 75	Glu	Gly	Gly	Val	Glu 80
Pro	Asn	Lys	Pro	Val 85	Arg	Tyr	Ser	Tyr	Thr 90	Arg	Gln	Ala	Arg	Gly 95	Ser
Trp	Ser	Leu	Asn 100	Trp	Leu	Val	Pro	Ile 105	Gly	His	Glu	Lys	Pro 110	Ser	Asn
Ile	Lys	Val 115	Phe	Ile	His	Glu	Leu 120	Asn	Ala	Gly	Asn	Gln 125	Leu	Ser	His
Met	Ser 130	Pro	Ile	Tyr	Thr	Ile 135	Glu	Met	Gly	Asp	Glu 140	Leu	Leu	Ala	Lys
Leu 145	Ala	Arg	Asp	Ala	Thr 150	Phe	Phe	Val	Arg	Ala 155	His	Glu	Ser	Asn	Glu 160
Met	Gln	Pro	Thr	Leu 165	Ala	Ile	Ser	His	Ala 170	Gly	Val	Ser	Val	Val 175	Met
Ala	Gln	Ala	Gln 180	Pro	Arg	Arg	Glu	Lys 185	Arg	Trp	Ser	Glu	Trp 190	Ala	Ser
Gly	Lys	Val 195	Leu	Сув	Leu	Leu	Asp 200	Pro	Leu	Asp	Gly	Val 205	Tyr	Asn	Tyr
Leu	Ala 210	Gln	Gln	Arg	Сла	Asn 215	Leu	Asp	Asp	Thr	Trp 220	Glu	Gly	Lys	Ile
Tyr 225	Arg	Val	Leu	Ala	Gly 230	Asn	Pro	Ala	Lys	His 235	Asp	Leu	Asp	Ile	Lys 240
Pro	Thr	Val	Ile	Ser 245	His	Arg	Leu	His	Phe 250	Pro	Glu	Gly	Gly	Ser 255	Leu
Ala	Ala	Leu	Thr	Ala	His	Gln	Ala	Cys	His	Leu	Pro	Leu	Glu	Thr	Phe

	260 265 270														
			260					265					270		
Thr	Arg	His 275	_	Gln	Pro	Arg	Gly 280	Trp	Glu	Gln	Leu	Glu 285	Gln	СЛа	Gly
Tyr	Pro 290	Val	Gln	Arg	Leu	Val 295	Ala	Leu	Tyr	Leu	Ala 300	Ala	Arg	Leu	Ser
Trp 305	Asn	Gln	Val	Asp	Gln 310	Val	Ile	Arg	Asn	Ala 315	Leu	Ala	Ser	Pro	Gly 320
Ser	Gly	Gly	Asp	Leu 325	Gly	Glu	Ala	Ile	Arg 330	Glu	Gln	Pro	Glu	Gln 335	Ala
Arg	Leu	Ala	Leu 340	Thr	Leu	Ala	Ala	Ala 345	Glu	Ser	Glu	Arg	Phe 350	Val	Arg
Gln	Gly	Thr 355	Gly	Asn	Asp	Glu	Ala 360	Gly	Ala	Ala	Ser	Ala 365	Asp	Val	Val
Ser	Leu 370	Thr	CÀa	Pro	Val	Ala 375	Ala	Gly	Glu	Cys	Ala 380	Gly	Pro	Ala	Aap
Ser 385	Gly	Asp	Ala	Leu	Leu 390	Glu	Arg	Asn	Tyr	Pro 395	Thr	Gly	Ala	Glu	Phe 400
Leu	Gly	Asp	Gly	Gly 405	Asp	Ile	Ser	Phe	Ser 410	Thr	Arg	Gly	Thr	Gln 415	Asn
Trp	Thr	Val	Glu 420	Arg	Leu	Leu	Gln	Ala 425	His	Arg	Gln	Leu	Glu 430	Glu	Arg
Gly	Tyr	Val 435	Phe	Val	Gly	Tyr	His 440	Gly	Thr	Phe	Leu	Glu 445	Ala	Ala	Gln
Ser	Ile 450	Val	Phe	Gly	Gly	Val 455	Arg	Ala	Arg	Ser	Gln 460	Asp	Leu	Asp	Ala
Ile 465	Trp	Arg	Gly	Phe	Tyr 470	Ile	Ala	Gly	Asp	Pro 475	Ala	Leu	Ala	Tyr	Gly 480
Tyr	Ala	Gln	Asp	Gln 485	Glu	Pro	Asp	Ala	Arg 490	Gly	Arg	Ile	Arg	Asn 495	Gly
Ala	Leu	Leu	Arg 500	Val	Tyr	Val	Pro	Arg 505	Ser	Ser	Leu	Pro	Gly 510	Phe	Tyr
Arg	Thr	Gly 515	Leu	Thr	Leu	Ala	Ala 520	Pro	Glu	Ala	Ala	Gly 525	Glu	Val	Glu
Arg	Leu 530	Ile	Gly	His	Pro	Leu 535	Pro	Leu	Arg	Leu	Asp 540	Ala	Ile	Thr	Gly
Pro 545		Glu	Glu	Gly	Gly 550		Leu	Glu		Ile 555		Gly	Trp		Leu 560
Ala	Glu	Arg	Thr	Val 565	Val	Ile	Pro	Ser	Ala 570	Ile	Pro	Thr	Asp	Pro 575	Arg
Asn	Val	Gly	Gly 580	Asp	Leu	Asp	Pro	Ser 585	Ser	Ile	Pro	Asp	Lys 590	Glu	Gln
Ala	Ile	Ser 595	Ala	Leu	Pro	Asp	Tyr 600	Ala	Ser	Gln	Pro	Gly 605	Lys	Pro	Pro
Arg	Glu 610	Asp	Leu	Lys											
<213 <213 <213 <220 <221 <222	L> LI 2> T 3> OI 0> FI L> NA 2> LO 3> OT	ENGTI YPE: RGAN: EATUI AME/I OCAT: THER	ISM: RE: KEY: ION: INF	21 Pset VAR: (1)	IANT (32 FION	21) : PE	var:	Lant		n de:	letic	ons :	for 1	ıse a	as fusion

-continued

<400> SEQUENCE: 150

```
Gly Gly Gly Ser Gly Gly Ser Leu Ala Ala Leu Thr Ala His Gln
                                   10
Ala Cys His Leu Pro Leu Glu Thr Phe Thr Arg His Arg Gln Pro Arg
Gly Trp Glu Gln Leu Glu Gln Cys Gly Tyr Pro Val Gln Arg Leu Val
Ala Leu Tyr Leu Ala Ala Arg Leu Ser Trp Asn Gln Val Asp Gln Val
Ile Arg Asn Ala Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu Gly Glu
Ala Ile Arg Glu Gln Pro Glu Gln Ala Arg Leu Ala Leu Thr Leu Ala
Ala Ala Glu Ser Glu Arg Pro Thr Gly Ala Glu Phe Leu Gly Asp Gly
Gly Asp Ile Ser Phe Ser Thr Arg Gly Thr Gln Asn Trp Thr Val Glu
Arg Leu Leu Gln Ala His Arg Gln Leu Glu Glu Arg Gly Tyr Val Phe
Val Gly Tyr His Gly Thr Phe Leu Glu Ala Ala Gln Ser Ile Val Phe
                   150
Gly Gly Val Arg Ala Arg Ser Gln Asp Leu Asp Ala Ile Trp Arg Gly
Phe Tyr Ile Ala Gly Asp Pro Ala Leu Ala Tyr Gly Tyr Ala Gln Asp
                               185
Gln Glu Pro Asp Ala Arg Gly Arg Ile Arg Asn Gly Ala Leu Leu Arg
                          200
Val Tyr Val Pro Arg Ser Ser Leu Pro Gly Phe Tyr Arg Thr Gly Leu
                      215
Thr Leu Ala Ala Pro Glu Ala Ala Gly Glu Val Glu Arg Leu Ile Gly
His Pro Leu Pro Leu Arg Leu Asp Ala Ile Thr Gly Pro Glu Glu Glu
                                   250
Gly Gly Arg Leu Glu Thr Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr
Val Val Ile Pro Ser Ala Ile Pro Thr Asp Pro Arg Asn Val Gly Gly
Asp Leu Asp Pro Ser Ser Ile Pro Asp Lys Glu Gln Ala Ile Ser Ala
Leu Pro Asp Tyr Ala Ser Gln Pro Gly Lys Pro Pro Arg Glu Asp Leu
Lvs
<210> SEQ ID NO 151
<211> LENGTH: 321
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (1)..(321)
<223> OTHER INFORMATION: PE variant
<400> SEQUENCE: 151
Gly Gly Gly Ser Gly Gly Ser Leu Ala Ala Leu Thr Ala His Gln
```

-continued

Ala Cys His Leu Pro Leu Glu Thr Phe Thr Arg His Arg Gln Pro Arg 25 Gly Trp Glu Gln Leu Glu Gln Cys Gly Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr Leu Ala Ala Arg Leu Ser Trp Asn Gln Val Asp Gln Val Ile Arg Asn Ala Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg Glu Gln Pro Glu Gln Ala Arg Leu Ala Leu Thr Leu Ala Ala Ala Glu Ser Glu Arg Pro Thr Gly Ala Glu Phe Leu Gly Asp Gly Gly Asp Ile Ser Phe Ser Thr Arg Gly Thr Gln Asn Trp Thr Val Glu Arg Leu Leu Gln Ala His Arg Gln Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr His Gly Thr Phe Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser Gln Asp Leu Asp Ala Ile Trp Arg Gly Phe Tyr Ile Ala Gly Asp Pro Ala Leu Ala Tyr Gly Tyr Ala Gln Asp 185 Gln Glu Pro Asp Ala Arg Gly Arg Ile Arg Asn Gly Ala Leu Leu Arg 200 Val Tyr Val Pro Arg Ser Ser Leu Pro Gly Phe Tyr Arg Thr Gly Leu Thr Leu Ala Ala Pro Glu Ala Ala Gly Glu Val Glu Arg Leu Ile Gly 230 235 His Pro Leu Pro Leu Arg Leu Asp Ala Ile Thr Gly Pro Glu Glu Glu 250 Gly Gly Arg Leu Glu Thr Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr 265 Val Val Ile Pro Ser Ala Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp Leu Asp Pro Ser Ser Ile Pro Asp Gln Glu Gln Ala Ile Ser Ala 295 Leu Pro Asp Tyr Ala Ser Gln Pro Gly Gln Pro Pro Arg Glu Asp Leu Arg <210> SEQ ID NO 152 <211> LENGTH: 613 <212> TYPE: PRT <213 > ORGANISM: Pseudomonas aeruginosa <220> FEATURE: <221> NAME/KEY: VARIANT <222> LOCATION: (1)..(613) <223> OTHER INFORMATION: PE variant <400> SEQUENCE: 152 Ala Glu Glu Ala Phe Asp Leu Trp Asn Glu Cys Ala Lys Ala Cys Val Leu Asp Leu Lys Asp Gly Val Arg Ser Ser Arg Met Ser Val Asp Pro 25 Ala Ile Ala Asp Thr Asn Gly Gln Gly Val Leu His Tyr Ser Met Val 40

Leu	Glu 50	Gly	Gly	Asn	Asp	Ala 55	Leu	Lys	Leu	Ala	Ile 60	Asp	Asn	Ala	Leu
Ser 65	Ile	Thr	Ser	Asp	Gly 70	Leu	Thr	Ile	Arg	Leu 75	Glu	Gly	Gly	Val	Glu 80
Pro	Asn	Lys	Pro	Val 85	Arg	Tyr	Ser	Tyr	Thr 90	Arg	Gln	Ala	Arg	Gly 95	Ser
Trp	Ser	Leu	Asn 100	Trp	Leu	Val	Pro	Ile 105	Gly	His	Glu	Lys	Pro 110	Ser	Asn
Ile	Lys	Val 115	Phe	Ile	His	Glu	Leu 120	Asn	Ala	Gly	Asn	Gln 125	Leu	Ser	His
Met	Ser 130	Pro	Ile	Tyr	Thr	Ile 135	Glu	Met	Gly	Asp	Glu 140	Leu	Leu	Ala	Lys
Leu 145	Ala	Arg	Asp	Ala	Thr 150	Phe	Phe	Val	Arg	Ala 155	His	Glu	Ser	Asn	Glu 160
Met	Gln	Pro	Thr	Leu 165	Ala	Ile	Ser	His	Ala 170	Gly	Val	Ser	Val	Val 175	Met
Ala	Gln	Ala	Gln 180	Pro	Arg	Arg	Glu	Lys 185	Arg	Trp	Ser	Glu	Trp 190	Ala	Ser
Gly	Lys	Val 195	Leu	CAa	Leu	Leu	Asp 200	Pro	Leu	Asp	Gly	Val 205	Tyr	Asn	Tyr
Leu	Ala 210	Gln	Gln	Arg	GÀa	Asn 215	Leu	Asp	Asp	Thr	Trp 220	Glu	Gly	ГÀа	Ile
Tyr 225	Arg	Val	Leu	Ala	Gly 230	Asn	Pro	Ala	Lys	His 235	Asp	Leu	Asp	Ile	Lys 240
Pro	Thr	Val	Ile	Ser 245	His	Arg	Leu	His	Phe 250	Pro	Glu	Gly	Gly	Ser 255	Leu
Ala	Ala	Leu	Thr 260	Ala	His	Gln	Ala	Сув 265	His	Leu	Pro	Leu	Glu 270	Thr	Phe
Thr	Arg	His 275	Arg	Gln	Pro	Arg	Gly 280	Trp	Glu	Gln	Leu	Glu 285	Gln	CÀa	Gly
Tyr	Pro 290	Val	Gln	Arg	Leu	Val 295	Ala	Leu	Tyr	Leu	Ala 300	Ala	Arg	Leu	Ser
Trp 305	Asn	Gln	Val	Asp	Gln 310	Val	Ile	Arg	Asn	Ala 315	Leu	Ala	Ser	Pro	Gly 320
Ser	Gly	Gly	Asp	Leu 325	Gly	Glu	Ala	Ile	Arg 330	Glu	Gln	Pro	Glu	Gln 335	Ala
Arg	Leu	Ala	Leu 340	Thr	Leu	Ala	Ala	Ala 345		Ser	Glu	Arg	Phe 350	Val	Arg
Gln	Gly	Thr 355	Gly	Asn	Asp	Glu	Ala 360	Gly	Ala	Ala	Ser	Ala 365	Asp	Val	Val
Ser	Leu 370	Thr	Cys	Pro	Val	Ala 375	Ala	Gly	Glu	Cys	Ala 380	Gly	Pro	Ala	Asp
Ser 385	Gly	Asp	Ala	Leu	Leu 390	Glu	Arg	Asn	Tyr	Pro 395	Thr	Gly	Ala	Glu	Phe 400
Leu	Gly	Asp	Gly	Gly 405	Asp	Ile	Ser	Phe	Ser 410	Thr	Arg	Gly	Thr	Gln 415	Asn
Trp	Thr	Val	Glu 420	Arg	Leu	Leu	Gln	Ala 425	His	Arg	Gln	Leu	Glu 430	Glu	Arg
Gly	Tyr	Val 435	Phe	Val	Gly	Tyr	His 440	Gly	Thr	Phe	Leu	Glu 445	Ala	Ala	Gln
Ser	Ile 450	Val	Phe	Gly	Gly	Val 455	Arg	Ala	Arg	Ser	Gln 460	Asp	Leu	Asp	Ala

-continued

Ile Trp Arg Gly Phe Tyr Ile Ala Gly Asp Pro Ala Leu Ala Tyr Gly 470 475 Tyr Ala Gln Asp Gln Glu Pro Asp Ala Arg Gly Arg Ile Arg Asn Gly Ala Leu Leu Arg Val Tyr Val Pro Arg Ser Ser Leu Pro Gly Phe Tyr 505 Arg Thr Gly Leu Thr Leu Ala Ala Pro Glu Ala Ala Gly Glu Val Glu Arg Leu Ile Gly His Pro Leu Pro Leu Arg Leu Asp Ala Ile Thr Gly Pro Glu Glu Glu Gly Gly Arg Leu Glu Thr Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr Val Val Ile Pro Ser Ala Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp Leu Asp Pro Ser Ser Ile Pro Asp Lys Glu Gln Ala Ile Ser Ala Leu Pro Asp Tyr Ala Ser Gln Pro Gly Lys Pro Pro 595 600 605 Arg Glu Asp Leu Lys 610 <210> SEO ID NO 153 <211> LENGTH: 363 <212> TYPE: PRT <213> ORGANISM: Pseudomonas aeruginosa <220> FEATURE: <221> NAME/KEY: VARIANT <222> LOCATION: (1) .. (363) <223> OTHER INFORMATION: PE variant <400> SEQUENCE: 153 Pro Glu Gly Gly Ser Leu Ala Ala Leu Thr Ala His Gln Ala Cys His 10 Leu Pro Leu Glu Thr Phe Thr Arg His Arg Gln Pro Arg Gly Trp Glu 25 Gln Leu Glu Gln Cys Gly Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr Leu Ala Ala Arg Leu Ser Trp Asn Gln Val Asp Gln Val Ile Arg Asn Ala Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg 65 70 75 80 Glu Gln Pro Glu Gln Ala Arg Leu Ala Leu Thr Leu Ala Ala Glu Ser Glu Arg Phe Val Arg Gln Gly Thr Gly Asn Asp Glu Ala Gly Ala Ala Ser Ala Asp Val Val Ser Leu Thr Cys Pro Val Ala Ala Gly Glu Cys Ala Gly Pro Ala Asp Ser Gly Asp Ala Leu Leu Glu Arg Asn Tyr 135 Pro Thr Gly Ala Glu Phe Leu Gly Asp Gly Gly Asp Ile Ser Phe Ser 150 155 Thr Arg Gly Thr Gln Asn Trp Thr Val Glu Arg Leu Leu Gln Ala His Arg Gln Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr His Gly Thr Phe Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg

277 278

200

195

Ser	Gln 210	Asp	Leu	Asp	Ala	Ile 215	Trp	Arg	Gly	Phe	Tyr 220	Ile	Ala	Gly	Asp
Pro 225	Ala	Leu	Ala	Tyr	Gly 230	Tyr	Ala	Gln	Asp	Gln 235	Glu	Pro	Asp	Ala	Arg 240
Gly	Arg	Ile	Arg	Asn 245	Gly	Ala	Leu	Leu	Arg 250	Val	Tyr	Val	Pro	Arg 255	Ser
Ser	Leu	Pro	Gly 260	Phe	Tyr	Arg	Thr	Gly 265	Leu	Thr	Leu	Ala	Ala 270	Pro	Glu
Ala	Ala	Gly 275	Glu	Val	Glu	Arg	Leu 280	Ile	Gly	His	Pro	Leu 285	Pro	Leu	Arg
Leu	Asp 290	Ala	Ile	Thr	Gly	Pro 295	Glu	Glu	Glu	Gly	Gly 300	Arg	Leu	Glu	Thr
Ile 305	Leu	Gly	Trp	Pro	Leu 310	Ala	Glu	Arg	Thr	Val 315	Val	Ile	Pro	Ser	Ala 320
Ile	Pro	Thr	Asp	Pro 325	Arg	Asn	Val	Gly	Gly 330	Asp	Leu	Asp	Pro	Ser 335	Ser
Ile	Pro	Asp	Lys 340	Glu	Gln	Ala	Ile	Ser 345	Ala	Leu	Pro	Asp	Tyr 350	Ala	Ser
Gln	Pro	Gly 355	Lys	Pro	Pro	Arg	Glu 360	Asp	Leu	Lys					
<213 <213 <213 <223 <223 <223	0 > FI L > NA 2 > LO 3 > OT	ENGTI YPE: RGANI EATUI AME/I OCATI	H: 3: PRT ISM: RE: KEY: ION: INF(Pset VAR: (1)	idomo IANT (3: ION	L8)				egin:	ing v	with	init	:iat:	lon
		SCIIIC	onine	3											
< 400)> SI														
	D> SI	EQUEÌ	NCE :	154	Glu	Gln	Суз	Gly	Tyr 10	Pro	Val	Gln	Arg	Leu 15	Val
Met 1	0> SI Trp	EQUEI Glu	NCE: Gln	154 Leu 5	Glu Ala				10					15	
Met 1 Ala	D> SI Trp Leu	EQUEI Glu Tyr	NCE: Gln Leu 20	154 Leu 5		Arg	Leu	Ser 25	10 Trp	Asn	Gln	Val	Asp	15 Gln	Val
Met 1 Ala Ile	D> SI Trp Leu Arg	Glu Tyr Asn 35	Gln Leu 20 Ala	154 Leu 5 Ala Leu	Ala	Arg Ser	Leu Pro 40	Ser 25 Gly	10 Trp Ser	Asn Gly	Gln Gly	Val Asp 45	Asp 30 Leu	15 Gln Gly	Val Glu
Met 1 Ala Ile Ala	D> SI Trp Leu Arg Ile 50	Glu Tyr Asn 35	CE: Gln Leu 20 Ala Glu	154 Leu 5 Ala Leu Gln	Ala Ala	Arg Ser Glu 55	Leu Pro 40 Gln	Ser 25 Gly Ala	10 Trp Ser Arg	Asn Gly Leu	Gln Gly Ala 60	Val Asp 45 Leu	Asp 30 Leu Thr	Gln Gly Leu	Val Glu Ala
Met 1 Ala Ile Ala Ala 65	Trp Leu Arg Ile 50 Ala	EQUENTY TYR Asn 35 Arg	NCE: Gln Leu 20 Ala Glu Ser	154 Leu 5 Ala Leu Gln Glu	Ala Ala Pro	Arg Ser Glu 55 Phe	Leu Pro 40 Gln Val	Ser 25 Gly Ala Arg	10 Trp Ser Arg	Asn Gly Leu Gly 75	Gln Gly Ala 60 Thr	Val Asp 45 Leu Gly	Asp 30 Leu Thr	Gln Gly Leu Asp	Val Glu Ala Glu 80
Met 1 Ala Ile Ala 65 Ala	O> SH Trp Leu Arg Ile 50 Ala	Glu Tyr Asn 35 Arg Glu Ala	Gln Leu 20 Ala Glu Ser Ala	Leu 5 Ala Leu Gln Glu Asn 85	Ala Ala Pro Arg 70	Arg Ser Glu 55 Phe	Leu Pro 40 Gln Val	Ser 25 Gly Ala Arg	Trp Ser Arg Gln Ser 90	Asn Gly Leu Gly 75 Gly	Gln Gly Ala 60 Thr	Val Asp 45 Leu Gly Ala	Asp 30 Leu Thr Asn	Gln Gly Leu Asp Leu 95	Val Glu Ala Glu 80 Glu
Met 1 Ala Ile Ala Ala 65 Ala	O> SF Trp Leu Arg Ile 50 Ala Gly	Glu Tyr Asn 35 Arg Glu Ala	NCE: Gln Leu 20 Ala Glu Ser Ala Pro 100	Leu 5 Ala Leu Gln Glu Asn 85 Thr	Ala Ala Pro Arg 70 Gly	Arg Ser Glu 55 Phe Pro	Leu Pro 40 Gln Val Ala Glu	Ser 25 Gly Ala Arg Asp	Trp Ser Arg Gln Ser 90 Leu	Asn Gly Leu Gly 75 Gly	Gln Gly Ala 60 Thr Asp	Val Asp 45 Leu Gly Ala	Asp 30 Leu Thr Asn Leu Gly 110	Gln Gly Leu Asp Leu 95 Asp	Val Glu Ala Glu 80 Glu Val
Met 1 Ala Ile Ala Ala 65 Ala Arg	D> SI Trp Leu Arg Ile 50 Ala Gly Asn	Glu Tyr Asn 35 Arg Glu Ala Tyr	CE: Gln Leu 20 Ala Glu Ser Ala Pro 100 Thr	Leu 5 Ala Leu Gln Glu Asn 85 Thr	Ala Ala Pro Arg 70 Gly Gly	Arg Ser Glu 55 Phe Pro Ala	Leu Pro 40 Gln Val Ala Glu Glu	Ser 25 Gly Ala Arg Asp Phe 105 Asn	Trp Ser Arg Gln Ser 90 Leu Trp	Asn Gly Leu Gly 75 Gly Gly Thr	Gln Gly Ala 60 Thr Asp Asp	Val Asp 45 Leu Gly Ala Gly Glu 125	Asp 30 Leu Thr Asn Leu Gly 110 Arg	Gln Gly Leu Asp Leu 95 Asp	Val Glu Ala Glu 80 Glu Val Leu
Met 1 Ala Ile Ala Ala 65 Ala Arg Gin	D> SI Trp Leu Arg Ile 50 Ala Gly Asn Phe	Glu Tyr Asn 35 Arg Glu Ala Tyr Ser 115	NCE: Gln Leu 20 Ala Glu Ser Ala Pro 100 Thr	Leu 5 Ala Leu Gln Glu Asn 85 Thr Arg Gln	Ala Ala Pro Arg 70 Gly Gly	Arg Ser Glu 55 Phe Pro Ala Thr Glu 135	Leu Pro 40 Gln Val Ala Glu Glu Gln 120	Ser 25 Gly Ala Arg Asp Phe 105 Asn	Trp Ser Arg Gln Ser 90 Leu Trp	Asn Gly Leu Gly 75 Gly Gly Thr	Gln Gly Ala 60 Thr Asp Val Val	Val Asp 45 Leu Gly Ala Gly Glu 125 Phe	Asp 30 Leu Thr Asn Leu Gly 110 Arg	15 Gln Gly Leu Asp Leu 95 Asp	Val Glu Ala Glu 80 Glu Val Leu
Met 1 Ala Ile Ala Ala 65 Ala Arg Gln His 145	O> SI Trp Leu Arg Ile 50 Ala Gly Asn Phe Ala 130	Glu Tyr Asn 35 Arg Glu Ala Tyr Ser 115 His	NCE: Gln Leu 20 Ala Glu Ser Ala Pro 100 Thr Arg	Leu 5 Ala Leu Gln Glu Asn 85 Thr Arg Gln Leu	Ala Ala Pro Arg 70 Gly Gly Gly Leu Glu	Arg Ser Glu 55 Phe Pro Ala Thr Glu 135 Ala	Leu Pro 40 Gln Val Ala Glu Glu Gln 120 Glu Ala	Ser 25 Gly Ala Arg Asp Phe 105 Asn Arg Gln	Trp Ser Arg Gln Ser 90 Leu Trp Gly Ser	Asn Gly Leu Gly 75 Gly Gly Thr Tyr Ile 155	Gln Gly Ala 60 Thr Asp Val Val 140 Val	Val Asp 45 Leu Gly Ala Gly Clu 125 Phe	Asp 30 Leu Thr Asn Leu Gly 110 Arg Val	Gln Gly Leu Asp Leu 95 Asp Leu Gly	Val Glu Ala Glu 80 Glu Val Leu Tyr

	180 185 190														
			180					185					190		
Asp	Ala	Arg 195	Gly	Arg	Ile	Arg	Asn 200	Gly	Ala	Leu	Leu	Arg 205	Val	Tyr	Val
Pro	Arg 210	Ser	Ser	Leu	Pro	Gly 215	Phe	Tyr	Arg	Thr	Ser 220	Leu	Thr	Leu	Ala
Ala 225	Pro	Glu	Ala	Ala	Gly 230	Glu	Val	Glu	Arg	Leu 235	Ile	Gly	His	Pro	Leu 240
Pro	Leu	Arg	Leu	Asp 245	Ala	Ile	Thr	Gly	Pro 250	Glu	Glu	Glu	Gly	Gly 255	Arg
Leu	Glu	Thr	Ile 260	Leu	Gly	Trp	Pro	Leu 265	Ala	Glu	Arg	Thr	Val 270	Val	Ile
Pro	Ser	Ala 275	Ile	Pro	Thr	Asp	Pro 280	Arg	Asn	Val	Gly	Gly 285	Asp	Leu	Asp
Pro	Ser 290	Ser	Ile	Pro	Asp	Lys 295	Glu	Gln	Ala	Ile	Ser 300	Ala	Leu	Pro	Asp
Tyr 305	Ala	Ser	Gln	Pro	Gly 310	Lys	Pro	Pro	Arg	Glu 315	Asp	Leu	Lys		
<211 <212 <213 <220 <221 <222	L> LH 2> TY 3> OH 0> FH L> NH 2> LO	EATUF AME/F DCATI	H: 34 PRT SM: RE: CEY:	Pset VARI	IANT (34	16)	aeri	-		ininq	g wit	ch me	ethic	onine	ž
< 400)> SI	EQUE	ICE :	155											
Met 1	Gly	Gly	Ser	Leu 5	Ala	Ala	Leu	Thr	Ala 10	His	Gln	Ala	Сув	His 15	Leu
Pro	Leu	Glu	Thr 20	Phe	Thr	Arg	His	Arg 25	Gln	Pro	Arg	Gly	Trp 30	Glu	Gln
Leu	Glu	Gln 35	Сув	Gly	Tyr	Pro	Val 40	Gln	Arg	Leu	Val	Ala 45	Leu	Tyr	Leu
Ala	Ala 50	Arg	Leu	Ser	Trp	Asn 55	Gln	Val	Asp	Gln	Val 60	Ile	Arg	Asn	Ala
Leu 65	Ala	Ser	Pro	Gly	Ser 70	Gly	Gly	Asp	Leu	Gly 75	Glu	Ala	Ile	Arg	Glu 80
Gln	Pro	Glu					Ala						Ala	Glu 95	Ser
Glu	Arg	Phe	Val 100	Arg	Gln	Gly	Thr	Gly 105	Asn	Asp	Glu	Ala	Gly 110	Ala	Ala
Asn	Gly	Pro 115	Ala	Asp	Ser	Gly	Asp 120	Ala	Leu	Leu	Glu	Arg 125	Asn	Tyr	Pro
Thr	Gly 130	Ala	Glu	Phe	Leu	Gly 135	Asp	Gly	Gly	Asp	Val 140	Ser	Phe	Ser	Thr
Arg 145	Gly	Thr	Gln	Asn	Trp 150	Thr	Val	Glu	Arg	Leu 155	Leu	Gln	Ala	His	Arg 160
Gln	Leu	Glu	Glu	Arg 165	Gly	Tyr	Val	Phe	Val 170	Gly	Tyr	His	Gly	Thr 175	Phe
Leu	Glu	Ala	Ala 180	Gln	Ser	Ile	Val	Phe 185	Gly	Gly	Val	Arg	Ala 190	Arg	Ser
Gln	Asp	Leu 195	Asp	Ala	Ile	Trp	Arg 200	Gly	Phe	Tyr	Ile	Ala 205	Gly	Asp	Pro
Ala	Leu 210	Ala	Tyr	Gly	Tyr	Ala 215	Gln	Asp	Gln	Glu	Pro 220	Asp	Ala	Arg	Gly

-continued

Arg Ile Arg Asn Gly Ala Leu Leu Arg Val Tyr Val Pro Arg Ser Ser 230 Leu Pro Gly Phe Tyr Arg Thr Ser Leu Thr Leu Ala Ala Pro Glu Ala Ala Gly Glu Val Glu Arg Leu Ile Gly His Pro Leu Pro Leu Arg Leu Asp Ala Ile Thr Gly Pro Glu Glu Glu Gly Gly Arg Leu Glu Thr Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr Val Val Ile Pro Ser Ala Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp Leu Asp Pro Ser Ser Ile Pro Asp Gln Glu Gln Ala Ile Ser Ala Leu Pro Asp Tyr Ala Ser Gln Pro Gly Gln Pro Pro Arg Glu Asp Leu Arg 340 <210> SEO ID NO 156 <211> LENGTH: 613 <212> TYPE: PRT <213> ORGANISM: Pseudomonas aeruginosa <400> SEOUENCE: 156 Ala Glu Glu Ala Phe Asp Leu Trp Asn Glu Cys Ala Lys Ala Cys Val 10 Leu Asp Leu Lys Asp Gly Val Arg Ser Ser Arg Met Ser Val Asp Pro Ala Ile Ala Asp Thr Asn Gly Gln Gly Val Leu His Tyr Ser Met Val 40 Leu Glu Gly Gly Asn Asp Ala Leu Lys Leu Ala Ile Asp Asn Ala Leu Ser Ile Thr Ser Asp Gly Leu Thr Ile Arg Leu Glu Gly Gly Val Glu Pro Asn Lys Pro Val Arg Tyr Ser Tyr Thr Arg Gln Ala Arg Gly Ser Trp Ser Leu Asn Trp Leu Val Pro Ile Gly His Glu Lys Pro Ser Asn 105 Ile Lys Val Phe Ile His Glu Leu Asn Ala Gly Asn Gln Leu Ser His Met Ser Pro Ile Tyr Thr Ile Glu Met Gly Asp Glu Leu Leu Ala Lys Leu Ala Arg Asp Ala Thr Phe Phe Val Arg Ala His Glu Ser Asn Glu Met Gln Pro Thr Leu Ala Ile Ser His Ala Gly Val Ser Val Val Met Ala Gln Ala Gln Pro Arg Arg Glu Lys Arg Trp Ser Glu Trp Ala Ser 185 Gly Lys Val Leu Cys Leu Leu Asp Pro Leu Asp Gly Val Tyr Asn Tyr 200 Leu Ala Gln Gln Arg Cys Asn Leu Asp Asp Thr Trp Glu Gly Lys Ile Tyr Arg Val Leu Ala Gly Asn Pro Ala Lys His Asp Leu Asp Ile Lys Pro Thr Val Ile Ser His Arg Leu His Phe Pro Glu Gly Gly Ser Leu

	245	250	25	5
Ala Ala Leu Thr 260	Ala His Gln	Ala Cys His Lo 265	eu Pro Leu Glu Th 270	ır Phe
Thr Arg His Arg 275	Gln Pro Arg	Gly Trp Glu G	in Leu Glu Gln Cy 285	rs Gly
Tyr Pro Val Gln 290	Arg Leu Val 295	Ala Leu Tyr L	eu Ala Ala Arg Le 300	u Ser
Trp Asn Gln Val 305	Asp Gln Val 310	Ile Arg Asn A	la Leu Ala Ser Pr 15	o Gly 320
Ser Gly Gly Asp	Leu Gly Glu 325	Ala Ile Arg G	lu Gln Pro Glu Gl 33	
Arg Leu Ala Leu 340	Thr Leu Ala	Ala Ala Glu So 345	er Glu Arg Phe Va 350	ıl Arg
Gln Gly Thr Gly 355	Asn Asp Glu	Ala Gly Ala A	la Asn Ala Asp Va 365	ıl Val
Ser Leu Thr Cys 370	Pro Val Ala 375	Ala Gly Glu C	vs Ala Gly Pro Al 380	.a Asp
Ser Gly Asp Ala 385	Leu Leu Glu 390	Arg Asn Tyr P	ro Thr Gly Ala Gl 95	u Phe 400
Leu Gly Asp Gly	Gly Asp Val 405	Ser Phe Ser Th	nr Arg Gly Thr Gl 41	
Trp Thr Val Glu 420	Arg Leu Leu	Gln Ala His A 425	rg Gln Leu Glu Gl 430	u Arg
Gly Tyr Val Phe 435	Val Gly Tyr	His Gly Thr Pl	ne Leu Glu Ala Al 445	a Gln
Ser Ile Val Phe 450	Gly Gly Val 455	Arg Ala Arg S	er Gln Asp Leu As 460	p Ala
Ile Trp Arg Gly 465	Phe Tyr Ile 470	Ala Gly Asp P	ro Ala Leu Ala Ty 75	r Gly 480
Tyr Ala Gln Asp	Gln Glu Pro 485	Asp Ala Arg G	ly Arg Ile Arg As 49	
Ala Leu Leu Arg 500	Val Tyr Val	Pro Arg Ser Se 505	er Leu Pro Gly Ph 510	ıe Tyr
Arg Thr Ser Leu 515	Thr Leu Ala	Ala Pro Glu A 520	la Ala Gly Glu Va 525	ıl Glu
Arg Leu Ile Gly 530	His Pro Leu 535	Pro Leu Arg L	eu Asp Ala Ile Th 540	ır Gly
Pro Glu Glu Glu 545	Gly Gly Arg 550	Leu Glu Thr I	le Leu Gly Trp Pr 55	o Leu 560
Ala Glu Arg Thr	Val Val Ile 565	Pro Ser Ala I 570	le Pro Thr Asp Pr 57	_
Asn Val Gly Gly 580	Asp Leu Asp	Pro Ser Ser I 585	le Pro Asp Gln Gl 590	u Gln
Ala Ile Ser Ala 595	Leu Pro Asp	Tyr Ala Ser G	in Pro Gly Gln Pr 605	o Pro
Arg Glu Asp Leu 610	Arg			
<210> SEQ ID NO <211> LENGTH: 22				
<212> TYPE: PRT				
<213> ORGANISM: <220> FEATURE:		aeruginosa		
<221> NAME/KEY: <222> LOCATION:				
	,			

```
<223> OTHER INFORMATION: PE variant fusion-ready sequence with Gly-Ser
     linker at amino terminus for joining to C-terminal end of
     heterologous protein
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (1)..(5)
<223> OTHER INFORMATION: Gly-Ser linker
<400> SEQUENCE: 157
Gly Gly Gly Ser Pro Thr Gly Ala Glu Phe Leu Gly Asp Gly Gly
Asp Val Ser Phe Ser Thr Arg Gly Thr Gln Asn Trp Thr Val Glu Arg
Leu Leu Gln Ala His Arg Gln Leu Glu Glu Arg Gly Tyr Val Phe Val
Gly Tyr His Gly Thr Phe Leu Glu Ala Ala Gln Ser Ile Val Phe Gly
Gly Val Arg Ala Arg Ser Gln Asp Leu Asp Ala Ile Trp Arg Gly Phe 65 70 75 80
Tyr Ile Ala Gly Asp Pro Ala Leu Ala Tyr Gly Tyr Ala Gln Asp Gln
Glu Pro Asp Ala Arg Gly Arg Ile Arg Asn Gly Ala Leu Leu Arg Val 100 \ \ 105 \ \ \ 110
Tyr Val Pro Arg Ser Ser Leu Pro Gly Phe Tyr Arg Thr Ser Leu Thr
                          120
Leu Ala Ala Pro Glu Ala Ala Gly Glu Val Glu Arg Leu Ile Gly His
                     135
Pro Leu Pro Leu Arg Leu Asp Ala Ile Thr Gly Pro Glu Glu Gly
                                       155
                   150
Gly Arg Leu Glu Thr Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr Val
Val Ile Pro Ser Ala Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp
                     185
Leu Asp Pro Ser Ser Ile Pro Asp Gln Glu Gln Ala Ile Ser Ala Leu
Pro Asp Tyr Ala Ser Gln Pro Gly Gln Pro Pro Arg Glu Asp Leu Arg
                      215
<210> SEQ ID NO 158
<211> LENGTH: 334
<212> TYPE: PRT
<213 > ORGANISM: Pseudomonas aeruginosa
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (1) .. (334)
<223> OTHER INFORMATION: PE variant
<400> SEQUENCE: 158
Met Trp Glu Gln Leu Glu Gln Ser Gly Tyr Pro Val Gln Arg Leu Val
                        10
Ala Leu Tyr Leu Ala Ala Arg Leu Ser Trp Asn Gln Val Asp Gln Val
Ile Arg Asn Ala Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu Gly Glu
Ala Ile Arg Glu Gln Pro Glu Gln Ala Arg Leu Ala Leu Thr Leu Ala
Ala Ala Glu Ser Glu Arg Phe Val Arg Gln Gly Thr Gly Asn Asp Glu
                                        75
```

Ala Gly Ala Ala Asn Ala Asp Val Val Ser Leu Thr Cys Pro Val Ala

-continued

Ala Gly Glu Cys Ala Gly Pro Ala Asp Ser Gly Asp Ala Leu Leu Glu Arg Asn Tyr Pro Thr Gly Ala Glu Phe Leu Gly Asp Gly Gly Asp Val Ser Phe Ser Thr Arg Gly Thr Gln Asn Trp Thr Val Glu Arg Leu Leu Gln Ala His Arg Gln Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr 145 $$ 150 $$ 155 $$ 160 His Gly Thr Phe Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser Gln Asp Leu Asp Ala Ile Trp Arg Gly Phe Tyr Ile Ala Gly Asp Pro Ala Leu Ala Tyr Gly Tyr Ala Gl
n Asp Gln Glu Pro 195 200 205 Pro Arg Ser Ser Leu Pro Gly Phe Tyr Arg Thr Ser Leu Thr Leu Ala 230 Ala Pro Glu Ala Ala Gly Glu Val Glu Arg Leu Ile Gly His Pro Leu 250 Pro Leu Arg Leu Asp Ala Ile Thr Gly Pro Glu Glu Glu Gly Gly Arg 265 Leu Glu Thr Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr Val Val Ile Pro Ser Ala Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp Leu Asp 295 Pro Ser Ser Ile Pro Asp Lys Glu Gln Ala Ile Ser Ala Leu Pro Asp 310 315 Tyr Ala Ser Gln Pro Gly Lys Pro Pro Arg Glu Asp Leu Lys 325 330 <210> SEQ ID NO 159 <211> LENGTH: 318 <212> TYPE: PRT <213 > ORGANISM: Pseudomonas aeruginosa <220> FEATURE: <221> NAME/KEY: VARIANT <222> LOCATION: (1)..(318) <223> OTHER INFORMATION: PE variant <400> SEQUENCE: 159 Met Trp Glu Gln Leu Glu Gln Ser Gly Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr Leu Ala Ala Arg Leu Ser Trp Asn Gln Val Asp Gln Val Ile Arg Asn Ala Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu Gly Glu 40 Ala Ile Arg Glu Gln Pro Glu Gln Ala Arg Leu Ala Leu Thr Leu Ala 55 Ala Ala Glu Ser Glu Arg Phe Val Arg Gln Gly Thr Gly Asn Asp Glu Ala Gly Ala Ala Asn Gly Pro Ala Asp Ser Gly Asp Ala Leu Leu Glu Arg Asn Tyr Pro Thr Gly Ala Glu Phe Leu Gly Asp Gly Gly Asp Val

		105		110
Ser Phe Ser Thr	Arg Gly T	Thr Gln Asn 120	Trp Thr Va	al Glu Arg Leu Leu 125
Gln Ala His Arg		Glu Glu Arg 135	Gly Tyr Va	al Phe Val Gly Tyr 10
His Gly Thr Phe	Leu Glu A 150	Ala Ala Gln	Ser Ile Va 155	al Phe Gly Gly Val 160
Arg Ala Arg Ser	Gln Asp L 165	Leu Asp Ala	Ile Trp An 170	ng Gly Phe Tyr Ile 175
Ala Gly Asp Pro		Ala Tyr Gly 185		ln Asp Gln Glu Pro 190
Asp Ala Arg Gly 195	Arg Ile A	Arg Asn Gly 200	Ala Leu Le	eu Arg Val Tyr Val 205
Pro Arg Ser Ser 210		Gly Phe Tyr 215	Arg Thr Se	er Leu Thr Leu Ala 20
Ala Pro Glu Ala 225	Ala Gly G 230	Glu Val Glu	Arg Leu Il 235	le Gly His Pro Leu 240
Pro Leu Arg Leu	Asp Ala I 245	Ile Thr Gly	Pro Glu Gl 250	lu Glu Gly Gly Arg 255
Leu Glu Thr Ile 260	-	Frp Pro Leu 265	Ala Glu Ar	rg Thr Val Val Ile 270
Pro Ser Ala Ile 275	Pro Thr A	Asp Pro Arg 280	Asn Val Gl	ly Gly Asp Leu Asp 285
Pro Ser Ser Ile 290		Lys Glu Gln 295	Ala Ile Se	er Ala Leu Pro Asp 00
Tyr Ala Ser Gln 305	Pro Gly L 310	Lys Pro Pro	Arg Glu As 315	sp Leu Lys
<pre><210> SEQ ID NO <211> LENGTH: 3 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <221> NAME/KEY: <222> LOCATION: <223> OTHER INF</pre>	Pseudomon VARIANT (1)(363	3)	osa	
<pre><211> LENGTH: 3 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <221> NAME/KEY: <222> LOCATION:</pre>	Pseudomon VARIANT (1)(363 ORMATION:	3)	osa	
<pre><211> LENGTH: 3 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <221> NAME/KEY: <222> LOCATION: <223> OTHER INF <400> SEQUENCE:</pre>	Pseudomon VARIANT (1)(363 ORMATION:	3) PE variant		is Gln Ala Cys His 15
<211> LENGTH: 3 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <221> NAME/KEY: <222> LOCATION: <223> OTHER INF <400> SEQUENCE: Pro Glu Gly Gly 1	Pseudomon VARIANT (1)(363 ORMATION: 160 Ser Leu A 5	3) PE variant Ala Ala Leu	Thr Ala Hi	_
<211> LENGTH: 3 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <221> NAME/KEY: <222> LOCATION: <223> OTHER INF <400> SEQUENCE: Pro Glu Gly Gly 1 Leu Pro Leu Glu 20	Pseudomon VARIANT (1)(363 ORMATION: 160 Ser Leu A 5	3) PE variant Ala Ala Leu Thr Arg His 25	Thr Ala Hi 10 Arg Gln Pi	15 to Arg Gly Trp Glu
<pre><211> LENGTH: 3 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <221> NAME/KEY: <222> LOCATION: <223> OTHER INF <400> SEQUENCE: Pro Glu Gly Gly 1 Leu Pro Leu Glu 20 Gln Leu Glu Gln 35</pre>	Pseudomon VARIANT (1)(363 ORMATION: 160 Ser Leu A 5 Thr Phe T Cys Gly T	PE variant Ala Ala Leu Thr Arg His 25 Tyr Pro Val 40	Thr Ala Hi 10 Arg Gln Pi Gln Arg Le	to Arg Gly Trp Glu 30 eu Val Ala Leu Tyr 45 In Val Ile Arg Asn
<pre><211> LENGTH: 3 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <221> NAME/KEY: <222> LOCATION: <223> OTHER INF <400> SEQUENCE: Pro Glu Gly Gly 1 Leu Pro Leu Glu 20 Gln Leu Glu Gln 35</pre> Leu Ala Ala Arg 50	Pseudomon VARIANT (1)(363 ORMATION: 160 Ser Leu A 5 Thr Phe T Cys Gly T Leu Ser T 5	PE variant Ala Ala Leu Thr Arg His 25 Tyr Pro Val 40 Trp Asn Gln	Thr Ala Hi 10 Arg Gln Pi Gln Arg Le Val Asp Gl	to Arg Gly Trp Glu 30 eu Val Ala Leu Tyr 45 In Val Ile Arg Asn
<pre><211> LENGTH: 3 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <221> NAME/KEY: <222> LOCATION: <223> OTHER INF <400> SEQUENCE: Pro Glu Gly Gly 1 Leu Pro Leu Glu 20 Gln Leu Glu Gln 35 Leu Ala Ala Arg 50</pre> Ala Leu Ala Ser 65	Pseudomon VARIANT (1)(363 ORMATION: 160 Ser Leu A 5 Thr Phe T Cys Gly T Leu Ser T 5 Pro Gly S 70	PE variant Ala Ala Leu Thr Arg His 25 Tyr Pro Val 40 Frp Asn Gln 55 Ser Gly Gly	Thr Ala Hi 10 Arg Gln Pr Gln Arg Le Val Asp Gl 60 Asp Leu Gl 75	to Arg Gly Trp Glu 30 eu Val Ala Leu Tyr 45 in Val Ile Arg Asn by Glu Ala Ile Arg
<211> LENGTH: 3 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <221> NAME/KEY: <222> LOCATION: <223> OTHER INF <400> SEQUENCE: Pro Glu Gly Gly 1 Leu Pro Leu Glu 20 Gln Leu Glu Gln 35 Leu Ala Ala Arg 50 Ala Leu Ala Ser 65 Glu Gln Pro Glu	Pseudomon VARIANT (1)(363 ORMATION: 160 Ser Leu A 5 Thr Phe T Cys Gly T Leu Ser T Pro Gly S 70 Gln Ala A 85 Val Arg G	PE variant Ala Ala Leu Thr Arg His 25 Tyr Pro Val 40 Trp Asn Gln 55 Ser Gly Gly Arg Leu Ala	Thr Ala Hi 10 Arg Gln Pr Gln Arg Le Val Asp Gl Asp Leu Gl 75 Leu Thr Le 90	to Arg Gly Trp Glu 30 eu Val Ala Leu Tyr 45 In Val Ile Arg Asn Ly Glu Ala Ile Arg 80 eu Ala Ala Ala Glu
<pre><211> LENGTH: 3 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <221> NAME/KEY: <222> LOCATION: <223> OTHER INF <400> SEQUENCE: Pro Glu Gly Gly 1 Leu Pro Leu Glu 20 Gln Leu Glu Gln 35 Leu Ala Ala Arg 50 Ala Leu Ala Ser 65 Glu Gln Pro Glu Ser Glu Arg Phe 100</pre>	Pseudomon VARIANT (1)(363 ORMATION: 160 Ser Leu A 5 Thr Phe T Cys Gly T Leu Ser T 5 Pro Gly S 70 Gln Ala A 85 Val Arg G	PE variant Ala Ala Leu Thr Arg His 25 Tyr Pro Val 40 Trp Asn Gln 55 Ser Gly Gly Arg Leu Ala Gln Gly Thr 105	Thr Ala Hi 10 Arg Gln Pr Gln Arg Le Val Asp Gl 66 Asp Leu Gl 75 Leu Thr Le 90 Gly Asn As	To Arg Gly Trp Glu 30 Eu Val Ala Leu Tyr 45 In Val Ile Arg Asn Ly Glu Ala Ile Arg 80 Eu Ala Ala Ala Glu 95 Ep Glu Ala Gly Ala

-continued

Pro Thr Gly Ala Glu Phe Leu Gly Asp Gly Gly Asp Val Ser Phe Ser 150 Thr Arg Gly Thr Gln Asn Trp Thr Val Glu Arg Leu Leu Gln Ala His Arg Gln Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr His Gly Thr Phe Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser Gln Asp Leu Asp Ala Ile Trp Arg Gly Phe Tyr Ile Ala Gly Asp Pro Ala Leu Ala Tyr Gly Tyr Ala Gln Asp Gln Glu Pro Asp Ala Arg 225 230 235 240 Gly Arg Ile Arg Asn Gly Ala Leu Leu Arg Val Tyr Val Pro Arg Ser Ser Leu Pro Gly Phe Tyr Arg Thr Ser Leu Thr Leu Ala Ala Pro Glu 265 Ala Ala Gly Glu Val Glu Arg Leu Ile Gly His Pro Leu Pro Leu Arg 280 Leu Asp Ala Ile Thr Gly Pro Glu Glu Glu Gly Gly Arg Leu Glu Thr 295 Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr Val Val Ile Pro Ser Ala 315 310 Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp Leu Asp Pro Ser Ser 330 Ile Pro Asp Lys Glu Gln Ala Ile Ser Ala Leu Pro Asp Tyr Ala Ser 340 345 Gln Pro Gly Lys Pro Pro Arg Glu Asp Leu Lys <210> SEQ ID NO 161 <211> LENGTH: 635 <212> TYPE: PRT <213 > ORGANISM: Pseudomonas aeruginosa <220> FEATURE: <221> NAME/KEY: VARIANT <222> LOCATION: (1)..(635) <223> OTHER INFORMATION: PE variant from GenBank Accession Number YP_792118 <400> SEQUENCE: 161 Met His Leu Ile Pro His Trp Ile Pro Leu Val Ala Ser Leu Gly Leu Leu Ala Gly Gly Ser Phe Ala Ser Ala Ala Glu Glu Ala Phe Asp Leu $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$ Trp Asn Glu Cys Ala Lys Ala Cys Val Leu Asp Leu Lys Asp Gly Val $_{\rm 35}$ $_{\rm 40}$ $_{\rm 45}$ Arg Ser Ser Arg Met Ser Val Asp Pro Ala Ile Ala Asp Thr Asn Gly Gln Gly Val Leu His Tyr Ser Met Val Leu Glu Gly Gly Asn Asp Ala Leu Lys Leu Ala Ile Asp Asn Ala Leu Ser Ile Thr Ser Asp Gly Leu Thr Ile Arg Leu Glu Gly Gly Val Glu Pro Asn Lys Pro Val Arg Tyr 105 Ser Tyr Thr Arg Gln Ala Arg Gly Ser Trp Ser Leu Asn Trp Leu Val 120

Pro	Ile 130	Gly	His	Glu	Lys	Pro 135	Ser	Asn	Ile	Lys	Val 140	Phe	Ile	His	Glu
Leu 145	Asn	Ala	Gly	Asn	Gln 150	Leu	Ser	His	Met	Ser 155	Pro	Ile	Tyr	Thr	Ile 160
Glu	Met	Gly	Asp	Glu 165	Leu	Leu	Ala	Lys	Leu 170	Ala	Arg	Asp	Ala	Thr 175	Phe
Phe	Val	Arg	Ala 180	His	Glu	Ser	Asn	Glu 185	Met	Gln	Pro	Thr	Leu 190	Ala	Ile
Ser	His	Ala 195	Gly	Val	Ser	Val	Val 200	Met	Ala	Gln	Thr	Gln 205	Pro	Arg	Arg
Glu	Lys 210	Arg	Trp	Ser	Glu	Trp 215	Ala	Ser	Gly	Lys	Val 220	Leu	Сув	Leu	Leu
Asp 225	Pro	Leu	Asp	Gly	Val 230	Tyr	Asn	Tyr	Leu	Ala 235	Gln	Gln	Arg	Càa	Asn 240
Leu	Asp	Asp	Thr	Trp 245	Glu	Gly	Lys	Ile	Tyr 250	Arg	Val	Leu	Ala	Gly 255	Asn
Pro	Ala	Lys	His 260	Asp	Leu	Asp	Ile	Lув 265	Pro	Thr	Val	Ile	Ser 270	His	Arg
Leu	His	Phe 275	Pro	Glu	Gly	Gly	Ser 280	Leu	Ala	Ala	Leu	Thr 285	Ala	His	Gln
Ala	Cys 290	His	Leu	Pro	Leu	Glu 295	Thr	Phe	Thr	Arg	His 300	Arg	Gln	Pro	Arg
Gly 305	Trp	Glu	Gln	Leu	Glu 310	Gln	CÀa	Gly	Tyr	Pro 315	Val	Gln	Arg	Leu	Val 320
Ala	Leu	Tyr	Leu	Ala 325	Ala	Arg	Leu	Ser	Trp 330	Asn	Gln	Val	Asp	Gln 335	Val
Ile	Arg	Asn	Ala 340	Leu	Ala	Ser	Pro	Gly 345	Ser	Gly	Gly	Asp	Leu 350	Gly	Glu
Ala	Ile	Arg 355	Glu	Gln	Pro	Glu	Gln 360	Ala	Arg	Leu	Ala	Leu 365	Thr	Leu	Ala
	Ala 370				_	375		_		_	380	_		_	
Ala 385	Ser	Ala	Asp	Val	Val 390	Ser	Leu	Thr	Cys	Pro 395	Val	Ala	Ala	Gly	Glu 400
	Ala			405					410					415	
Pro	Thr	Gly	Ala 420	Glu	Phe	Leu	Gly	Asp 425	Gly	Gly	Asp	Val	Ser 430	Phe	Ser
Thr	Arg	Gly 435	Thr	Gln	Asn	Trp	Thr 440	Val	Glu	Arg	Leu	Leu 445	Gln	Ala	His
Arg	Gln 450	Leu	Glu	Glu	Arg	Gly 455	Tyr	Val	Phe	Val	Gly 460	Tyr	His	Gly	Thr
Phe 465	Leu	Glu	Ala	Ala	Gln 470	Ser	Ile	Val	Phe	Gly 475	Gly	Val	Arg	Ala	Arg 480
Ser	Gln	Asp	Leu	Asp 485	Ala	Ile	Trp	Arg	Gly 490	Phe	Tyr	Ile	Ala	Gly 495	Asp
Pro	Ala	Leu	Ala 500	Tyr	Gly	Tyr	Ala	Gln 505	Asp	Gln	Glu	Pro	Asp 510	Ala	Arg
Gly	Arg	Ile 515	Arg	Asn	Gly	Ala	Leu 520	Leu	Arg	Val	Tyr	Val 525	Pro	Arg	Ser
Ser	Leu 530	Pro	Gly	Phe	Tyr	Arg 535	Thr	Gly	Leu	Thr	Leu 540	Ala	Ala	Pro	Glu

-continued

Ala Ala Gly Glu Val Glu Arg Leu Ile Gly His Pro Leu Pro Leu Arg 550 555 Leu Asp Ala Ile Thr Gly Pro Glu Glu Glu Gly Gly Arg Leu Glu Thr Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr Val Val Ile Pro Ser Ala 585 Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp Leu Asp Pro Ser Ser Ile Pro Asp Gln Glu Gln Ala Ile Ser Ala Leu Pro Asp Tyr Ala Ser Gln Pro Gly Lys Pro Ser Arg Glu Asp Leu Lys <210> SEQ ID NO 162 <211> LENGTH: 613 <212> TYPE: PRT <213 > ORGANISM: Pseudomonas aeruginosa <220> FEATURE: <221> NAME/KEY: VARIANT <222> LOCATION: (1)..(613) <223> OTHER INFORMATION: PE variant from Genbank Accession number 11KQ_A <400> SEQUENCE: 162 Ala Glu Glu Ala Phe Asp Leu Trp Asn Glu Cys Ala Lys Ala Cys Val 10 Ala Ile Ala Asp Thr Asn Gly Gln Gly Val Leu His Tyr Ser Met Val Leu Glu Gly Gly Asn Asp Ala Leu Lys Leu Ala Ile Asp Asn Ala Leu Ser Ile Thr Ser Asp Gly Leu Thr Ile Arg Leu Glu Gly Gly Val Glu Pro Asn Lys Pro Val Arg Tyr Ser Tyr Thr Arg Gln Ala Arg Gly Ser Trp Ser Leu Asn Trp Leu Val Pro Ile Gly His Glu Lys Pro Ser Asn Ile Lys Val Phe Ile His Glu Leu Asn Ala Gly Asn Gln Leu Ser His 120 Met Ser Pro Ile Tyr Thr Ile Glu Met Gly Asp Glu Leu Leu Ala Lys Leu Ala Arg Asp Ala Thr Phe Phe Val Arg Ala His Glu Ser Asn Glu Met Gln Pro Thr Leu Ala Ile Ser His Ala Gly Val Ser Val Val Met Ala Gln Ala Gln Pro Arg Arg Glu Lys Arg Trp Ser Glu Trp Ala Ser Gly Lys Val Leu Cys Leu Leu Asp Pro Leu Asp Gly Val Tyr Asn Tyr 200 Leu Ala Gln Gln Arg Cys Asn Leu Asp Asp Thr Trp Glu Gly Lys Ile 215 Tyr Arg Val Leu Ala Gly Asn Pro Ala Lys His Asp Leu Asp Ile Lys Pro Thr Val Ile Ser His Arg Leu His Phe Pro Glu Gly Gly Ser Leu Ala Ala Leu Thr Ala His Gln Ala Cys His Leu Pro Leu Glu Thr Phe

-continued

									COII	CIII	aca	
	260				265					270		
Thr Arg H	is Arg 75	Gln Pro	Arg	Gly 280		Glu	Gln	Leu	Glu 285	Gln	CÀa	Gly
Tyr Pro V	al Gln	Arg Leu	Val 295	Ala	Leu	Tyr	Leu	Ala 300	Ala	Arg	Leu	Ser
Trp Asn G 305	ln Val	Asp Gln 310		Ile	Arg	Asn	Ala 315	Leu	Ala	Ser	Pro	Gly 320
Ser Gly G	ly Asp	Leu Gly 325	Glu	Ala	Ile	Arg 330	Glu	Gln	Pro	Glu	Gln 335	Ala
Arg Leu A	la Leu 340		Ala	Ala	Ala 345	Glu	Ser	Glu	Arg	Phe 350	Val	Arg
Gln Gly T	hr Gly 55	Asn Asp	Glu	Ala 360	Gly	Ala	Ala	Asn	Ala 365	Asp	Val	Val
Ser Leu T	hr Cys	Pro Val	Ala 375	Ala	Gly	Glu	Сув	Ala 380	Gly	Pro	Ala	Asp
Ser Gly A 385	sp Ala	Leu Leu 390		Arg	Asn	Tyr	Pro 395	Thr	Gly	Ala	Glu	Phe 400
Leu Gly A	sp Gly	Gly Asp 405	Val	Ser	Phe	Ser 410	Thr	Arg	Gly	Thr	Gln 415	Asn
Trp Thr V	al Glu 420	Arg Leu	Leu	Gln	Ala 425	His	Arg	Gln	Leu	Glu 430	Glu	Arg
Gly Tyr V	al Phe 35	Val Gly	Tyr	His 440	Gly	Thr	Phe	Leu	Glu 445	Ala	Ala	Gln
Ser Ile V 450	al Phe	Gly Gly	Val 455	Arg	Ala	Arg	Ser	Gln 460	Asp	Leu	Asp	Ala
Ile Trp A	rg Gly	Phe Tyr 470		Ala	Gly	Asp	Pro 475	Ala	Leu	Ala	Tyr	Gly 480
Tyr Ala G	ln Asp	Gln Glu 485	Pro	Asp	Ala	Arg 490	Gly	Arg	Ile	Arg	Asn 495	Gly
Ala Leu L	eu Arg 500	Val Tyr	Val	Pro	Arg 505	Ser	Ser	Leu	Pro	Gly 510	Phe	Tyr
Arg Thr S	er Leu 15	Thr Leu	Ala	Ala 520	Pro	Glu	Ala	Ala	Gly 525	Glu	Val	Glu
Arg Leu I 530	le Gly	His Pro	Leu 535	Pro	Leu	Arg	Leu	Asp 540	Ala	Ile	Thr	Gly
Pro Glu G 545	lu Glu		Arg		Glu				Gly	Trp	Pro	Leu 560
Ala Glu A	rg Thr	Val Val 565	Ile	Pro	Ser	Ala 570	Ile	Pro	Thr	Asp	Pro 575	Arg
Asn Val G	ly Gly 580	Asp Leu	Asp	Pro	Ser 585	Ser	Ile	Pro	Asp	Lys 590	Glu	Gln
Ala Ile S	er Ala 95	Leu Pro	Asp	Tyr 600	Ala	Ser	Gln	Pro	Gly 605	Lys	Pro	Pro
Arg Glu A 610	sp Leu	Lys										
<210 > SEQ <211 > LEN <212 > TYP <213 > ORG <220 > FEA <221 > NAM <222 > LOC <223 > OTH	GTH: 63 E: PRT ANISM: TURE: E/KEY: ATION:	Pseudom VARIANT (1)(6	13)				n Ger	nbanl	k Acc	cess:	ion 1	number 1IKP_A
<400> SEQ	UENCE:	163										

Ala 1	Glu	Glu	Ala	Phe 5	Aap	Leu	Trp	Asn	Glu 10	Cys	Ala	Lys	Ala	Сув 15	Val
Leu	Asp	Leu	Lys 20	Asp	Gly	Val	Arg	Ser 25	Ser	Arg	Met	Ser	Val 30	Asp	Pro
Ala	Ile	Ala 35	Asp	Thr	Asn	Gly	Gln 40	Gly	Val	Leu	His	Tyr 45	Ser	Met	Val
Leu	Glu 50	Gly	Gly	Asn	Asp	Ala 55	Leu	Lys	Leu	Ala	Ile 60	Asp	Asn	Ala	Leu
Ser 65	Ile	Thr	Ser	Asp	Gly 70	Leu	Thr	Ile	Arg	Leu 75	Glu	Gly	Gly	Val	Glu 80
Pro	Asn	ГЛа	Pro	Val 85	Arg	Tyr	Ser	Tyr	Thr 90	Arg	Gln	Ala	Arg	Gly 95	Ser
Trp	Ser	Leu	Asn 100	Trp	Leu	Val	Pro	Ile 105	Gly	His	Glu	Lys	Pro 110	Ser	Asn
Ile	Lys	Val 115	Phe	Ile	His	Glu	Leu 120	Asn	Ala	Gly	Asn	Gln 125	Leu	Ser	His
Met	Ser 130	Pro	Ile	Tyr	Thr	Ile 135	Glu	Met	Gly	Asp	Glu 140	Leu	Leu	Ala	ГÀа
Leu 145	Ala	Arg	Asp	Ala	Thr 150	Phe	Phe	Val	Arg	Ala 155	His	Glu	Ser	Asn	Glu 160
Met	Gln	Pro	Thr	Leu 165	Ala	Ile	Ser	His	Ala 170	Gly	Val	Ser	Val	Val 175	Met
Ala	Gln	Ala	Gln 180	Pro	Arg	Arg	Glu	Lys 185	Arg	Trp	Ser	Glu	Trp 190	Ala	Ser
Gly	Lys	Val 195	Leu	CÀa	Leu	Leu	Asp 200	Gln	Leu	Asp	Gly	Val 205	Tyr	Asn	Tyr
Leu	Ala 210	Gln	Gln	Arg	Cys	Asn 215	Leu	Asp	Asp	Thr	Trp 220	Glu	Gly	Lys	Ile
Tyr 225	Arg	Val	Leu	Ala	Gly 230	Asn	Pro	Ala	ГÀа	His 235	Asp	Leu	Asp	Ile	Lys 240
Pro	Thr	Val	Ile	Ser 245	His	Arg	Leu	His	Phe 250	Pro	Glu	Gly	Gly	Ser 255	Leu
Ala	Ala	Leu	Thr 260	Ala	His	Gln	Ala	Cys 265	His	Leu	Pro	Leu	Glu 270	Thr	Phe
Thr	Arg	His 275	Arg	Gln	Pro	Arg	Gly 280	Ala	Glu	Gln	Leu	Glu 285	Gln	Cya	Gly
Tyr	Pro 290	Val	Gln	Arg	Leu	Val 295	Ala	Leu	Tyr	Leu	Ala 300	Ala	Arg	Leu	Ser
Trp 305	Asn	Gln	Val	Asp	Gln 310	Val	Ile	Arg	Asn	Ala 315	Leu	Ala	Ser	Pro	Gly 320
Ser	Gly	Gly	Asp	Leu 325	Gly	Glu	Ala	Ile	Arg 330	Glu	Gln	Pro	Glu	Gln 335	Ala
Arg	Leu	Ala	Leu 340	Thr	Leu	Ala	Ala	Ala 345	Glu	Ser	Glu	Arg	Phe 350	Val	Arg
Gln	Gly	Thr 355	Gly	Asn	Asp	Glu	Ala 360	Gly	Ala	Ala	Asn	Ala 365	Asp	Val	Val
Ser	Leu 370	Thr	Сув	Pro	Val	Ala 375	Ala	Gly	Glu	Cys	Ala 380	Gly	Pro	Ala	Asp
Ser 385	Gly	Asp	Ala	Leu	Leu 390	Glu	Arg	Asn	Tyr	Pro 395	Thr	Gly	Ala	Glu	Phe 400
Leu	Gly	Asp	Gly	Gly 405	Asp	Val	Ser	Phe	Ser 410	Thr	Arg	Gly	Thr	Gln 415	Asn

```
Trp Thr Val Glu Arg Leu Leu Gln Ala His Arg Gln Leu Glu Glu Arg
                               425
Gly Tyr Val Phe Val Gly Tyr His Gly Thr Phe Leu Glu Ala Ala Gln
Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser Gln Asp Leu Asp Ala
                      455
Ile Trp Arg Gly Phe Tyr Ile Ala Gly Asp Pro Ala Leu Ala Tyr Gly
Tyr Ala Gln Asp Gln Glu Pro Asp Ala Arg Gly Arg Ile Arg Asn Gly
Ala Leu Leu Arg Val Tyr Val Pro Arg Ser Ser Leu Pro Gly Phe Tyr
Arg Thr Ser Leu Thr Leu Ala Ala Pro Glu Ala Ala Gly Glu Val Glu
Arg Leu Ile Gly His Pro Leu Pro Leu Arg Leu Asp Ala Ile Thr Gly
Pro Glu Glu Glu Gly Gly Arg Leu Glu Thr Ile Leu Gly Trp Pro Leu
Ala Glu Arg Thr Val Val Ile Pro Ser Ala Ile Pro Thr Asp Pro Arg
Asn Val Gly Gly Asp Leu Asp Pro Ser Ser Ile Pro Asp Lys Glu Gln
                     585
Ala Ile Ser Ala Leu Pro Asp Tyr Ala Ser Gln Pro Gly Lys Pro Pro
       595
                          600
Arg Glu Asp Leu Lys
   610
<210> SEO ID NO 164
<211> LENGTH: 517
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: IL2-PE fusion protein
<220> FEATURE:
<221> NAME/KEY: SIGNAL
<222> LOCATION: (1)..(20)
<223> OTHER INFORMATION: Predicted signal peptide sequence
<400> SEQUENCE: 164
Met Tyr Arg Met Gln Leu Leu Ser Cys Ile Ala Leu Ser Leu Ala Leu
Val Thr Asn Ser Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu
Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile
Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe
Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu
Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys
Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile
                               105
Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala
                         120
                                         125
Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe
                     135
                                140
```

_															
Сув 145	Gln	Ser	Ile	Ile	Ser 150	Thr	Leu	Thr	Ile	Pro 155	Glu	Gly	Gly	Ser	Leu 160
Ala	Ala	Leu	Thr	Ala 165	His	Gln	Ala	Cys	His 170	Leu	Pro	Leu	Glu	Thr 175	Phe
Thr	Arg	His	Arg 180	Gln	Pro	Arg	Gly	Trp 185	Glu	Gln	Leu	Glu	Gln 190	Сув	Gly
Tyr	Pro	Val 195	Gln	Arg	Leu	Val	Ala 200	Leu	Tyr	Leu	Ala	Ala 205	Arg	Leu	Ser
Trp	Asn 210	Gln	Val	Asp	Gln	Val 215	Ile	Arg	Asn	Ala	Leu 220	Ala	Ser	Pro	Gly
Ser 225	Gly	Gly	Asp	Leu	Gly 230	Glu	Ala	Ile	Arg	Glu 235	Gln	Pro	Glu	Gln	Ala 240
Arg	Leu	Ala	Leu	Thr 245	Leu	Ala	Ala	Ala	Glu 250	Ser	Glu	Arg	Phe	Val 255	Arg
Gln	Gly	Thr	Gly 260	Asn	Asp	Glu	Ala	Gly 265	Ala	Ala	Ser	Ala	Asp 270	Val	Val
Ser	Leu	Thr 275	Cys	Pro	Val	Ala	Ala 280	Gly	Glu	Сув	Ala	Gly 285	Pro	Ala	Aap
Ser	Gly 290	Asp	Ala	Leu	Leu	Glu 295	Arg	Asn	Tyr	Pro	Thr 300	Gly	Ala	Glu	Phe
Leu 305	Gly	Asp	Gly	Gly	Asp 310	Ile	Ser	Phe	Ser	Thr 315	Arg	Gly	Thr	Gln	Asn 320
Trp	Thr	Val	Glu	Arg 325	Leu	Leu	Gln	Ala	His 330	Arg	Gln	Leu	Glu	Glu 335	Arg
Gly	Tyr	Val	Phe 340	Val	Gly	Tyr	His	Gly 345	Thr	Phe	Leu	Glu	Ala 350	Ala	Gln
Ser	Ile	Val 355	Phe	Gly	Gly	Val	Arg 360	Ala	Arg	Ser	Gln	Asp 365	Leu	Asp	Ala
Ile	Trp 370	Arg	Gly	Phe	Tyr	Ile 375	Ala	Gly	Asp	Pro	Ala 380	Leu	Ala	Tyr	Gly
Tyr 385	Ala	Gln	Asp	Gln	Glu 390	Pro	Asp	Ala	Arg	Gly 395	Arg	Ile	Arg	Asn	Gly 400
Ala	Leu	Leu	Arg	Val 405	Tyr	Val	Pro	Arg	Ser 410	Ser	Leu	Pro	Gly	Phe 415	Tyr
Arg	Thr	Gly	Leu 420	Thr	Leu	Ala	Ala	Pro 425	Glu	Ala	Ala	Gly	Glu 430	Val	Glu
Arg	Leu	Ile 435	Gly	His	Pro	Leu	Pro 440	Leu	Arg	Leu	Asp	Ala 445	Ile	Thr	Gly
Pro	Glu 450	Glu	Glu	Gly	Gly	Arg 455	Leu	Glu	Thr	Ile	Leu 460	Gly	Trp	Pro	Leu
Ala 465	Glu	Arg	Thr	Val	Val 470	Ile	Pro	Ser	Ala	Ile 475	Pro	Thr	Asp	Pro	Arg 480
Asn	Val	Gly	Gly	Asp 485	Leu	Asp	Pro	Ser	Ser 490	Ile	Pro	Asp	Lys	Glu 495	Gln
Ala	Ile	Ser	Ala 500	Leu	Pro	Asp	Tyr	Ala 505	Ser	Gln	Pro	Gly	Lys 510	Pro	Pro
Arg	Glu	Asp 515	Leu	Lys											
<210)> SI	EQ II	ои с	165											

<210> SEQ ID NO 165 <211> LENGTH: 506 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE:

C223 STATER INDORMATION: ILL-PE fusion protein with Gly-Ser linker	_								_							
					ORMA'	LION	: IL2	2-PE	ius:	ıon 1	prot	ein '	with	GIY.	-Ser	linker
C223					MIS	C_FEA	TURE	C								
C2210 FEATURE: C221 NAME/REY: MISC_FEATURE C222 LOCATION: (154)(159) C223 OTHER INFORMATION: Gly-Ser linker C400 SEQUENCE: 165	<222	2 > L(CAT:	ON:	(1)	(50	06)									
					ORMA'	rion	: IL2	2-PE	fus	ion 1	prot	ein '	with	Gly	-Ser	linker
<pre>2222 DOCATION: (154](159) 2233 OTHER INFORMATION: Gly-Ser linker 2400> SEQUENCE: 165 Met Tyr Arg Met Gln Leu Leu Ser Cys Ile Ala Leu Ser Leu Ala Leu 15 Val Thr Asn Ser Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu 20 Cln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile 30 Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe 50 Cly Met Pro Lys Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu 65 Clu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys 85 Asn Phe His Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala 115 Asn Glu Thr Ala Thr Ile Val Glu Phe Leu Asn La Cys Glu Tyr Ala 115 Cys Glu Ser Ile Ile Ser Thr Leu Thr Gly Gly Gly Gly Gly Ser Pro 145 Clu Glu Glu Glu Cys Lys La Ala Leu Thr Ala His Gln Ala Cys His Leu 165 Clu Glu Gly Ser Leu Ala Ala Leu Thr Ala His Gln Ala Cys His Leu 165 Clu Glu Gly Cys Leu Ala Ala Leu Thr Ala His Gln Ala Cys His Leu 165 Clu Glu Gly Cys Cys Gly Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr Leu 200 Ala Ala Arg Leu Ser Trp Asn Gln Val Asp Gln Val Ile Arg Asn Ala 210 Cle Glu Gln Cys Gly Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr Leu 225 Clu Arg Phe Val Arg Gln Gly Thr Gly Asp Leu Gly Glu Ala Ala 220 Clu Arg Phe Val Arg Gln Gly Thr Gly Asp Leu Gly Glu Ala Ala 220 Clu Arg Phe Val Arg Gln Gly Thr Gly Asp Leu Gly Glu Ala Ala 220 Clu Arg Phe Val Arg Gln Gly Thr Gly Asp Leu Glu Ala Ala Cya 235 Clu Arg Phe Val Arg Gln Gly Thr Gly Asp Asp Glu Ala Gly Ala Ala 220 Clu Arg Phe Val Arg Gln Gly Thr Gly Asp Asp Glu Ala Gly Ala Ala 220 Clu Arg Phe Val Arg Gln Gly Thr Gly Asp Asp Glu Ala Gly Ala Ala 220 Clu Arg Phe Val Arg Gln Gly Thr Gly Asp Asp Glu Ala Gly Ala Ala 220 Clu Arg Phe Val Arg Gln Gly Thr Gly Asp Asp Glu Ala Gly Ala Ala 220 Clu Arg Phe Val Arg Gln Gly Thr Gly Asp Asp Glu Ala Gly Ala Ala 220 Clu Arg Phe Val Arg Gln Gly Thr Gly Asp Asp Glu Ala Gly Ala Ala 220 Clu Arg Phe Val Arg Gln Gly Thr Gly Asp Asp Glu Clu Ala Ala Gly Ala 235 Clu Clu Clu Clu Clu Ala Ala Glu Phe Leu Gly Asp Gly Gly Asp Tle Ser Phe Ser Thr 230 Clu Clu Clu Clu</pre>					MTC	~ pp7	יתודים	,								
<pre></pre>																
Met 1 Tyr Arg Met 2 Gln Leu Leu Ser Cys 1 1e Ala Leu Ser Leu Ala Leu 15 Ala Leu 15 Val Thr Asn Ser Ala Pro Thr Ser Ser Ser Ser Thr Lys Lys Thr Gln Leu 20 Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile 45 Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe 60 Asn Asn Tyr Lys Asn Pro Lys Leu Glu Glu Wal Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys Pro Leu Glu Glu Wal Leu Asn Leu Ala Gln Ser Lys 95 Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Wal Ile 100 Wal Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala 130 Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe 130 Glu Glu Fr Ala Thr Phe Thr Arg His Arg Gln Pro Arg Gly Gly Gly Gly Gly Fr Pro 150 Glu Glu Glu Glu Glu Glu Phe Leu Asn Arg Trp Ile Thr Phe 130 Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe 140 Wal Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala 120 Glu Glu Fr Pro 150 Cys Gln Ser Ile Ile Ser Asn Ala Ala Leu Thr Gly									r lim	nker						
Met 1 Tyr Arg Met 2 Gln Leu Leu Ser Cys 1 1e Ala Leu Ser Leu Ala Leu 15 Ala Leu 15 Val Thr Asn Ser Ala Pro Thr Ser Ser Ser Ser Thr Lys Lys Thr Gln Leu 20 Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile 45 Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe 60 Asn Asn Tyr Lys Asn Pro Lys Leu Glu Glu Wal Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys Pro Leu Glu Glu Wal Leu Asn Leu Ala Gln Ser Lys 95 Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Wal Ile 100 Wal Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala 130 Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe 130 Glu Glu Fr Ala Thr Phe Thr Arg His Arg Gln Pro Arg Gly Gly Gly Gly Gly Fr Pro 150 Glu Glu Glu Glu Glu Glu Phe Leu Asn Arg Trp Ile Thr Phe 130 Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe 140 Wal Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala 120 Glu Glu Fr Pro 150 Cys Gln Ser Ile Ile Ser Asn Ala Ala Leu Thr Gly	-400)	7011 51	ICE.	165											
1	(40)	, , ,,	- QUEI	NCE.	103											
Val Thr Asn Ser Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Gln Leu Asn Gly His Leu Leu Leu Asn Arn Tyr Lys Asn Pro Lys Lys Arn Fro Lys Lys Arn Arn Tyr Lys Asn Pro Lys Lys Arn Arn Tyr Lys Arn Arn Tyr Lys Arn Arn Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys His Leu Arn Leu Arn Gln Ser Lys Grown Ser Lys Gr	Met	Tyr	Arg	Met	Gln	Leu	Leu	Ser	Сув	Ile	Ala	Leu	Ser	Leu	Ala	Leu
20	1				5					10					15	
20	Val	Thr	Δen	Ser	Δla	Pro	Thr	Ser	Ser	Ser	Thr	Larg	Laze	Thr	Gln	I.eu
Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe 60												-2-	-1-			
Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe 60																
Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe 65 Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Glu Leu Lys Pro Arg Arg Leu He Arg Met 100 Asn Phe His Leu Arg Pro Arg Asp Leu He Ser Asn Ile Asn Lys 95 Asn Phe His Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala 115 Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Arg Arg Trp Ile Thr Phe 130 Cys Gln Ser Ile Ile Ser Thr Leu Thr Gly Gly Gly Gly Gly Fro 160 Glu Glu Glu Cys Leu Ala Ala Leu Thr Ala His Gln Ala Cys His Leu Glu 195 Pro Leu Glu Thr Phe Thr Arg His Arg Gln Pro Arg Gly Trp Glu Gln 185 Leu Glu Gln Cys Gly Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr Leu 200 Ala Ala Arg Leu Ser Trp Asn Gln Val Asp Glu Val Ile Arg Glu 240 Leu Ala Ser Pro Gly Ser Gly Gly Gly Asp Leu Gly Glu Ala Gly Ser Clu 245 Glu Arg Phe 243 Arg Leu Ala Ala Leu Thr Late Thr Leu Ala Ala Ala Cys His Leu 175 Ala Ala Arg Leu Ser Trp Asn Gln Val Asp Glu Ala Ala Glu Ser 255 Glu Arg Phe 243 Arg Leu Ala Leu Thr Late Arg Arg Glu Ala Glu Ser 255 Glu Arg Phe 243 Arg Leu Ala Leu Thr Late Thr Leu Ala Ala Ala Glu Ser 255 Glu Arg Phe 243 Arg Leu Ala Leu Thr Late Thr Leu Ala Ala Ala Glu Ser 255 Glu Arg Phe 243 Arg Glu Glr Thr Gly Asp Leu Gly Glu Ala Gly Ala Ala Ala 270 Arg Gly Thr Gln Asn Trp Thr Val Glu Arg Leu Leu Glu Ala Gly Ala Ala Ala 270 Arg Gly Thr Gln Asn Trp Thr Val Glu Arg Leu Leu Glu Ala His Arg 305 Glu Leu Glu Glu Ala Glu Arg Gly Tyr Val Phe Val Gly Tyr His Gly Thr Phe 335 Leu Glu Glu Ala Glu Arg Gly Tyr Val Phe Val Gly Gly Tyr His Gly Thr Phe 335 Leu Glu Glu Ala Ala Glu Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser 350 Leu Glu Ala Glu Ala Gly Fr Tyr Val Phe Val Gly Gly Val Arg Ala Arg Ser 350 Leu Glu Ala Ala Glu Ala Gly Tyr Val Phe Val Gly Gly Val Arg Ala Arg Ser 350 Leu Glu Ala Ala Glu Ala Gly Tyr Val Phe Gly Gly Val Arg Ala Arg Ser 350 Leu Glu Ala Ala Glu Ala Gly Tyr Val Phe Val Gly Gly Val Arg Ala Arg Ala Arg Ser 350 Arg Gly Ala Ala Glu Arg Gly Tyr Val Phe Gly Gly Val Arg Ala Arg Ser 3	Gln	Leu		His	Leu	Leu	Leu	_	Leu	Gln	Met	Ile		Asn	Gly	Ile
50			35					40					45			
Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Ser Lys Pro Leu Glu Glu Glu Val Leu Asn Leu Asn Leu Asn Leu Lys Pro Asn Pro Asn Pro Asn Leu Glu Thr Leu Asn Ile Cys Glu Thr Thr Phe Met Cys Glu Thr Ann Ile Man Ile Ile <td>Asn</td> <td>Asn</td> <td>Tyr</td> <td>Lys</td> <td>Asn</td> <td>Pro</td> <td>Lys</td> <td>Leu</td> <td>Thr</td> <td>Arg</td> <td>Met</td> <td>Leu</td> <td>Thr</td> <td>Phe</td> <td>Lys</td> <td>Phe</td>	Asn	Asn	Tyr	Lys	Asn	Pro	Lys	Leu	Thr	Arg	Met	Leu	Thr	Phe	Lys	Phe
65		50					55					60				
65	Tarr	Mat	Dro	Larg	Larg	Λla	Thr	Glu	T.011	Larg	Uic	T. 611	Gln	Cara	Leu	Glu
S5	_	nec	FIO	цуь	пур		1111	GIU	пец	цуь		пец	GIII	СуБ	пец	
S5																
Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile 110 Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala 125 Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe 145 Glu Glu Glu Gly Ser Leu Ala Ala Leu Thr Ala His Gly Gly Gly Gly Gly Gly Glu	Glu	Glu	Leu	ГЛа		Leu	Glu	Glu	Val		Asn	Leu	Ala	Gln		ГЛа
Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala 115					85					90					95	
Val Leu Glu Leu Lys Gly Ser Glu Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala Thr Ile Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Cys Gln Ser Ile Ile Ser Thr Leu Thr Gly Gly Gly Gly Gly Fro Info Info <td>Asn</td> <td>Phe</td> <td>His</td> <td>Leu</td> <td>Arq</td> <td>Pro</td> <td>Arq</td> <td>Asp</td> <td>Leu</td> <td>Ile</td> <td>Ser</td> <td>Asn</td> <td>Ile</td> <td>Asn</td> <td>Val</td> <td>Ile</td>	Asn	Phe	His	Leu	Arq	Pro	Arq	Asp	Leu	Ile	Ser	Asn	Ile	Asn	Val	Ile
Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe 130				100				-	105					110		
Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe 130			617			~ 7		~7	m1	m 1				e-7	_	
Asp Glu Thr Ala Thr Ile Val 315 Su Phe Leu Asn Arg Trp Ile Thr Phe 135 Su Phe Leu Asn Arg Trp Ile Thr Phe 145 Sup Gln Ser Ile Ile Ser Thr Leu Thr Gly 615 Gly 619 Gly 619 Ser Pro 160 Sup Gly 619 Gly 619 Ser Sup Gly 715 Sup Gly 619 Gly 619 Ser Sup Gly 619 Sup Gly 619 Ser Sup Gly 619	Val	Leu		Leu	ГЛа	GIY	Ser		Thr	Thr	Phe	Met	_	GIu	Tyr	Ala
130			113					120					123			
Cys Gln Ser Ile Ile Ser Thr Leu Thr Gly Gly Gly Gly Ser Leu Ala Ala Leu Thr Leu Thr Leu Thr Leu Thr Ala Ala Leu Thr Ala Leu Thr Ala Ala Leu Thr Ala Ala Ala Leu Thr Ala Ala <td>Asp</td> <td>Glu</td> <td>Thr</td> <td>Ala</td> <td>Thr</td> <td>Ile</td> <td>Val</td> <td>Glu</td> <td>Phe</td> <td>Leu</td> <td>Asn</td> <td>Arg</td> <td>Trp</td> <td>Ile</td> <td>Thr</td> <td>Phe</td>	Asp	Glu	Thr	Ala	Thr	Ile	Val	Glu	Phe	Leu	Asn	Arg	Trp	Ile	Thr	Phe
150		130					135					140				
150	Cvs	Gln	Ser	Tle	Tle	Ser	Thr	Leu	Thr	Glv	Glv	Glv	Glv	Glv	Ser	Pro
Pro Leu Glu Thr Phe Thr Arg His Arg Gln Pro Arg Gly Trp Glu Gln Ing										011		017	011	011		
Pro Leu Glu Thr Phe Thr Arg His Arg Gln Pro Arg Gly Trp Glu Gln Ing		_	_													
Pro Leu Glu Thr Phe Thr Arg His Arg Glu Pro Arg Gly Trp Glu Gln Image: Construction of the processing of the proc	Glu	Gly	Gly	Ser		Ala	Ala	Leu	Thr		His	Gln	Ala	Cys		Leu
Leu Glu Gln Cys Gly Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr Leu 210					103					170					1/3	
Leu Glu Glu Cys Gly Tyr Pro Val 200 Gln Arg Leu Val Leu Tyr Leu Ala Ala Arg Leu Ser Trp Asn Gln Val Asp Gln Val Ile Arg Asn Ala Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg Glu Ang Glu Ang Glu Ang Ile Arg Glu Ang Ile Ang Ang Ile Ang Ile Ang Ile Ang Ile Ang Ile Ang Ile Ang Ang Ile Ile Ang Ile Ang Ile Ile Ile Ile	Pro	Leu	Glu	Thr	Phe	Thr	Arg	His	Arg	Gln	Pro	Arg	Gly	Trp	Glu	Gln
195				180					185					190		
195	T.e.11	Glu	Gln	Ctra	Glv	Tyr	Pro	Val	Gln	Δra	I.em	Val	Δla	T.e.11	Tur	I.eu
Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg Glu 240	пси	OIU		СуБ	O _T y	- 7 -	110		0111	1119	пси	vai		пси	- 7 -	БСС
Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg Glu 240																
Leu 25 Ala Ser Pro Glu Gly 230 Ser Gly 230 Gly 230 Gly 230 Leu 235 Glu Ala Ala Ile Arg 240 Ala Ala Ala Ala Ala Glu 240 Gln Pro Glu Glu Gln Ala Arg Leu Ala Arg Leu Ala Leu Thr 250 Leu Ala Ala Ala Ala Ala Glu Ser 255 Ser Glu Arg Phe Val Arg 260 Arg 260 Gly Arg 260 Arg 260 Arg 260 Arg 260 Arg 260 Arg 270 Ala Ala Arg 270 Ala Ala Ala Arg 270 Ala Ala Ala Ala Arg 270 Ala Ala Ala Ala Ala Arg 270 Arg 270 Ala Ala Arg 270 Ala Ala Ala Ala Gln Arg 280 Ala Leu Leu Leu Glu Arg 300 Arg 280 Arg 280 Ala Leu Leu Leu Glu Arg 300 Arg 280 Arg 280 Ala Ala Ala Ala Gln Arg 310 Arg 280 Ala Arg 280 Ala Ala Ala Ala Gln Arg 310 Arg 280 Ala Ala Ala Ala Gln Arg 340 Arg 280 Ala	Ala		Arg	Leu	Ser	Trp		Gln	Val	Asp	Gln		Ile	Arg	Asn	Ala
235		210					215					220				
Gln Pro Glu Gln Ala Arg Leu Ala Leu Thr Leu Ala Ala Ala Ala Glu Ser 255 Glu Arg Phe Val Arg Gln Gly Thr Gly Asn Asn Glu Ala Gly Ala Ala 270 Ser Gly Pro Ala Asn Ser Gly Asn Asn Leu Leu Glu Arg Asn Tyr Pro 280 Thr Gly Ala Glu Phe Leu Gly Asn Gly Gly Asn Asn Glu Ser Thr 290 Arg Gly Thr Gln Asn Trp Thr Val Glu Arg 315 Glu Leu Glu Ala Glu Arg Gly Tyr Val Phe Jan Gly Gly Tyr His Gly Thr Phe 335 Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Gly Val Arg Ala Arg Ser 350 Ser Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Gly Val Arg Ala Arg Ser 350 Ser Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Gly Val Arg Ala Arg Ser 350 Ser Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser 350 Ser Glu Ala Arg Ser 350 Ser Glu Ala Arg Ser 350 Ser Clu Ala Arg Ser 350 Ser Clu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser 350 Ser Clu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser 350 Ser Clu Ala Arg Ser 350 Ser Clu Ala Arg Ser 350 Ser Clu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser 350 Ser Clu Ala Arg Ser 350 Ser Clu Ala Arg Ser 350 Ser Clu Ala Ala Clu Arg Ser 350 Ser Clu Arg Ser 350 Ser Clu Arg Ser 350 Ser Clu Ar	Leu	Ala	Ser	Pro	Gly	Ser	Gly	Gly	Asp	Leu	Gly	Glu	Ala	Ile	Arg	Glu
Ser Glu Arg Phe Val Arg Gln Gly Thr Gly Asn Asp Glu Ala Gly Ala Ala 270	225					230					235					240
Ser Glu Arg Phe Val Arg Gln Gly Thr Gly Asn Asp Glu Ala Gly Ala Ala 270	Gln	Dro	Glu	Gln	Λla	Δrα	T 11	Δla	T.011	Thr	T.011	7.7.5	Δla	Λla	Glu	Car
Ser Gly Pro 275 Ala Asp Ser Gly Asp 280 Ala Leu Leu Glu Arg 285 Asn Tyr Pro 285 Thr Gly Ala Glu Phe Leu Gly 295 Asp 295 Gly Gly Asp 315 Ile Ser Phe Ser Thr 300 Arg Gly Thr Gln Asn 310 Trp Thr Val Glu Arg 155 Glu Arg Leu Leu Gln Ala His Arg 320 Gln Leu Glu Glu Arg Gly 325 Tyr Val Phe Val Gly Tyr His Gly Thr Phe 335 Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser 350	GIII	FIO	GIU	GIII		nrg	пец	лта	Бец		пец	лта	AIA	лта		per
Ser Gly Pro 275 Ala Asp Ser Gly Asp 280 Ala Leu Leu Glu Asp 285 Asn Tyr Pro 285 Thr Gly Ala Glu Phe Leu Gly 295 Asp 295 Gly Gly Asp 316 Ile Ser Phe Ser Thr 300 Arg Gly Thr Gln Asn 310 Trp Thr Val Glu Arg Leu Leu Gln Ala His Arg 315 Arg 315 Gln Ala His Arg 320 Gln Leu Glu Glu Arg Gly 325 Tyr Val Phe Val Gly Tyr His Gly Thr Phe 335 Arg Gly Gly Val Arg Ala Arg Ser 350																
Ser Gly Pro Ala Asp Ser Gly Asp Ala Leu Leu Glu Arg Asn Tyr Pro 280 Ala Glu Arg Asn Tyr Pro 290 Ala Glu Phe Leu Gly Asp Gly Gly Asp Ile Ser Phe Ser Thr 290 Arg Gly Thr Gln Asn Trp Thr Val Glu Arg 315 Ala Leu Gln Ala His Arg 320 Ala Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr His Gly Thr Phe 335 Arg Gly Ala Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser 340 Arg 340 Arg Ser 345 Arg 345 Arg Ser 350 Ar	Glu	Arg	Phe		Arg	Gln	Gly	Thr		Asn	Asp	Glu	Ala	_	Ala	Ala
Thr Gly Ala Glu Phe Leu Gly Asp Gly Gly Asp 11e Ser Phe Ser Thr 300 Arg Gly Thr Gln Asn Trp Thr Val Glu Arg Leu Gln Ala His Arg 315 Gln Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr His Gly Thr Phe 335 Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser 350 Asp Gly Thr Gln Asn Trp Thr Val Glu Arg Leu Leu Gln Ala His Arg 320 Gln Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser 350 Asp Gly Thr Phe 335 Asp Gly Tyr His Gly Thr Phe 335 Arg Ser 350 Ar				260					265					270		
Thr Gly Ala Glu Phe Leu Gly Asp Gly Gly Asp Ile Ser Phe Ser Thr 290 Thr Gln Asn Trp Thr Val Glu Arg Leu Leu Gln Ala His Arg 315 Ser Gly Gly Tyr His Gly Thr Phe 325 Thr 320 Clu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Gly Val Arg Ala Arg Ser 340 Ser 340 Ser Ser Ser Phe Ser Thr 290 Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser 350 Ser	Ser	Gly	Pro	Ala	Asp	Ser	Gly	Asp	Ala	Leu	Leu	Glu	Arg	Asn	Tyr	Pro
290 295 300 Arg Gly Thr Gln Asn Trp Thr Val Glu Arg Leu Leu Gln Ala His Arg 320 Gln Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr His Gly Thr Phe 335 Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser 340		_	275		_		_	280					285		-	
290 295 300 Arg Gly Thr Gln Asn Trp Thr Val Glu Arg Leu Leu Gln Ala His Arg 320 Gln Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr His Gly Thr Phe 335 Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser 340						_		_			_		_		_	
Arg Gly Thr Gln Asn Trp Thr Val Glu Arg Leu Leu Gln Ala His Arg 315 Gln Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr His Gly Thr Phe 325 Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser 340	Thr		Ala	Glu	Phe	Leu		Asp	Gly	Gly	Asp		Ser	Phe	Ser	Thr
315 320 Gln Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr His Gly Thr Phe 325 Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser 340 Ser 345		290					295					300				
315 320 Gln Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr His Gly Thr Phe 325 Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser 340 Ser 345	Arq	Gly	Thr	Gln	Asn	Trp	Thr	Val	Glu	Arq	Leu	Leu	Gln	Ala	His	Arq
Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser 340 345 350	_	-				_				,						_
Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser 340 345 350																
Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser 340 345 350	Gln	Leu	Glu	Glu	_	Gly	Tyr	Val	Phe		Gly	Tyr	His	Gly		Phe
340 345 350					325					330					335	
340 345 350	Leu	Glu	Ala	Ala	Gln	Ser	Ile	Val	Phe	Glv	Glv	Val	Ara	Ala	Ara	Ser
Gln Asp Leu Asp Ala Ile Trp Arg Gly Phe Tyr Ile Ala Gly Asp Pro	_	_			_			_		1	-	_	,		,	
Gln Asp Leu Asp Ala Ile Trp Arg Gly Phe Tyr Ile Ala Gly Asp Pro																
	Gln	Asp	Leu	Asp	Ala	Ile	Trp	Arg	Gly	Phe	Tyr	Ile	Ala	Gly	Asp	Pro

```
Ala Leu Ala Tyr Gly Tyr Ala Gln Asp Gln Glu Pro Asp Ala Arg Gly
                       3.75
Arg Ile Arg Asn Gly Ala Leu Leu Arg Val Tyr Val Pro Arg Ser Ser
                  390
Leu Pro Gly Phe Tyr Arg Thr Gly Leu Thr Leu Ala Ala Pro Glu Ala
Ala Gly Glu Val Glu Arg Leu Ile Gly His Pro Leu Pro Leu Arg Leu
Asp Ala Ile Thr Gly Pro Glu Glu Glu Gly Gly Arg Leu Glu Thr Ile
Leu Gly Trp Pro Leu Ala Glu Arg Thr Val Val Ile Pro Ser Ala Ile
Pro Thr Asp Pro Arg Asn Val Gly Gly Asp Leu Asp Pro Ser Ser Ile
Pro Asp Lys Glu Gln Ala Ile Ser Ala Leu Pro Asp Tyr Ala Ser Gln
Pro Gly Lys Pro Pro Arg Glu Asp Leu Lys
           500
<210> SEO ID NO 166
<211> LENGTH: 517
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: IL2-PE fusion sequence
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (1)..(517)
<223> OTHER INFORMATION: IL2-PE fusion protein
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (1)..(20)
<223> OTHER INFORMATION: predicted signal peptide sequence
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (21)..(153)
<223> OTHER INFORMATION: IL2 sequence
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (21)..(153)
<223> OTHER INFORMATION: IL2 sequence
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (154)..(154)
<223> OTHER INFORMATION: Linking isoleucine amino acid
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (154) .. (154)
<223> OTHER INFORMATION: Linking isoleucine amino acid
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: (155)..(517)
<223> OTHER INFORMATION: PE variant sequence
<400> SEOUENCE: 166
Met Tyr Arg Met Gln Leu Leu Ser Cys Ile Ala Leu Ser Leu Ala Leu
Val Thr Asn Ser Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu
                              25
Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile
                 40
Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe
```

Tyr 65	Met	Pro	Lys	ГЛа	Ala 70	Thr	Glu	Leu	Lys	His 75	Leu	Gln	Cys	Leu	Glu 80
Glu	Glu	Leu	Lys	Pro 85	Leu	Glu	Glu	Val	Leu 90	Asn	Leu	Ala	Gln	Ser 95	Lys
Asn	Phe	His	Leu 100	Arg	Pro	Arg	Asp	Leu 105	Ile	Ser	Asn	Ile	Asn 110	Val	Ile
Val	Leu	Glu 115	Leu	Lys	Gly	Ser	Glu 120	Thr	Thr	Phe	Met	Сув 125	Glu	Tyr	Ala
Asp	Glu 130	Thr	Ala	Thr	Ile	Val 135	Glu	Phe	Leu	Asn	Arg 140	Trp	Ile	Thr	Phe
Cys 145	Gln	Ser	Ile	Ile	Ser 150	Thr	Leu	Thr	Ile	Pro 155	Glu	Gly	Gly	Ser	Leu 160
Ala	Ala	Leu	Thr	Ala 165	His	Gln	Ala	Cys	His 170	Leu	Pro	Leu	Glu	Thr 175	Phe
Thr	Arg	His	Arg 180	Gln	Pro	Arg	Gly	Trp 185	Glu	Gln	Leu	Glu	Gln 190	Сув	Gly
Tyr	Pro	Val 195	Gln	Arg	Leu	Val	Ala 200	Leu	Tyr	Leu	Ala	Ala 205	Arg	Leu	Ser
Trp	Asn 210	Gln	Val	Asp	Gln	Val 215	Ile	Arg	Asn	Ala	Leu 220	Ala	Ser	Pro	Gly
Ser 225	Gly	Gly	Asp	Leu	Gly 230	Glu	Ala	Ile	Arg	Glu 235	Gln	Pro	Glu	Gln	Ala 240
Arg	Leu	Ala	Leu	Thr 245	Leu	Ala	Ala	Ala	Glu 250	Ser	Glu	Arg	Phe	Val 255	Arg
Gln	Gly	Thr	Gly 260	Asn	Asp	Glu	Ala	Gly 265	Ala	Ala	Asn	Ala	Asp 270	Val	Val
Ser	Leu	Thr 275	СЛв	Pro	Val	Ala	Ala 280	Gly	Glu	Сла	Ala	Gly 285	Pro	Ala	Asp
Ser	Gly 290	Asp	Ala	Leu	Leu	Glu 295	Arg	Asn	Tyr	Pro	Thr 300	Gly	Ala	Glu	Phe
Leu 305	Gly	Asp	Gly	Gly	Asp 310	Val	Ser	Phe	Ser	Thr 315	Arg	Gly	Thr	Gln	Asn 320
Trp	Thr	Val	Glu	Arg 325	Leu	Leu	Gln	Ala	His 330	Arg	Gln	Leu	Glu	Glu 335	Arg
Gly	Tyr	Val	Phe 340	Val	Gly	Tyr	His	Gly 345	Thr	Phe	Leu	Glu	Ala 350	Ala	Gln
Ser		Val 355		Gly	Gly		Arg 360		Arg	Ser		Asp 365	Leu	Asp	Ala
Ile	Trp 370	Arg	Gly	Phe	Tyr	Ile 375	Ala	Gly	Asp	Pro	Ala 380	Leu	Ala	Tyr	Gly
Tyr 385	Ala	Gln	Asp	Gln	Glu 390	Pro	Asp	Ala	Arg	Gly 395	Arg	Ile	Arg	Asn	Gly 400
Ala	Leu	Leu	Arg	Val 405	Tyr	Val	Pro	Arg	Ser 410	Ser	Leu	Pro	Gly	Phe 415	Tyr
Arg	Thr	Ser	Leu 420	Thr	Leu	Ala	Ala	Pro 425	Glu	Ala	Ala	Gly	Glu 430	Val	Glu
Arg	Leu	Ile 435	Gly	His	Pro	Leu	Pro 440	Leu	Arg	Leu	Asp	Ala 445	Ile	Thr	Gly
Pro	Glu 450	Glu	Glu	Gly	Gly	Arg 455	Leu	Glu	Thr	Ile	Leu 460	Gly	Trp	Pro	Leu
Ala 465	Glu	Arg	Thr	Val	Val 470	Ile	Pro	Ser	Ala	Ile 475	Pro	Thr	Asp	Pro	Arg 480
Asn	Val	Gly	Gly	Asp	Leu	Asp	Pro	Ser	Ser	Ile	Pro	Asp	Lys	Glu	Gln

				485					490					495	
Ala	Ile	Ser	Ala 500	Leu	Pro	Asp	Tyr	Ala 505	Ser	Gln	Pro	Gly	Lys 510	Pro	Pro
Arg	Glu	Asp 515	Leu	ГÀа											
<211 <212 <213 <220 <221 <222	0 > FI L > NA 2 > LO 3 > OT	ENGTH (PE: RGANI EATUR AME/R OCATI	H: 63 PRT ISM: RE: CEY: ION: INFO	Homo MISO (1)	C_FEA	TURE	2	∍lin	seqi	ıenc€	e fro	om Ge	enBai	nk ac	ccession
< 400)> SI	EQUE	ICE :	167											
Met 1	Ala	Leu	Pro	Thr 5	Ala	Arg	Pro	Leu	Leu 10	Gly	Ser	CAa	Gly	Thr 15	Pro
Ala	Leu	Gly	Ser 20	Leu	Leu	Phe	Leu	Leu 25	Phe	Ser	Leu	Gly	Trp 30	Val	Gln
Pro	Ser	Arg 35	Thr	Leu	Ala	Gly	Glu 40	Thr	Gly	Gln	Glu	Ala 45	Ala	Pro	Leu
Asp	Gly 50	Val	Leu	Ala	Asn	Pro 55	Pro	Asn	Ile	Ser	Ser 60	Leu	Ser	Pro	Arg
Gln 65	Leu	Leu	Gly	Phe	Pro 70	Cas	Ala	Glu	Val	Ser 75	Gly	Leu	Ser	Thr	Glu 80
Arg	Val	Arg	Glu	Leu 85	Ala	Val	Ala	Leu	Ala 90	Gln	Lys	Asn	Val	Lys 95	Leu
Ser	Thr	Glu	Gln 100	Leu	Arg	CÀa	Leu	Ala 105	His	Arg	Leu	Ser	Glu 110	Pro	Pro
Glu	Asp	Leu 115	Asp	Ala	Leu	Pro	Leu 120	Asp	Leu	Leu	Leu	Phe 125	Leu	Asn	Pro
Asp	Ala 130	Phe	Ser	Gly	Pro	Gln 135	Ala	Cys	Thr	Arg	Phe 140	Phe	Ser	Arg	Ile
Thr 145	Lys	Ala	Asn	Val	Asp 150	Leu	Leu	Pro	Arg	Gly 155	Ala	Pro	Glu	Arg	Gln 160
Arg	Leu	Leu	Pro	Ala 165	Ala	Leu	Ala	Cys	Trp 170	Gly	Val	Arg	Gly	Ser 175	Leu
Leu	Ser	Glu	Ala 180	Asp	Val	Arg	Ala	Leu 185	Gly	Gly	Leu	Ala	Cys 190	Asp	Leu
Pro	Gly	Arg 195	Phe	Val	Ala	Glu	Ser 200	Ala	Glu	Val	Leu	Leu 205	Pro	Arg	Leu
Val	Ser 210	Cha	Pro	Gly	Pro	Leu 215	Asp	Gln	Asp	Gln	Gln 220	Glu	Ala	Ala	Arg
Ala 225	Ala	Leu	Gln	Gly	Gly 230	Gly	Pro	Pro	Tyr	Gly 235	Pro	Pro	Ser	Thr	Trp 240
Ser	Val	Ser	Thr	Met 245	Asp	Ala	Leu	Arg	Gly 250	Leu	Leu	Pro	Val	Leu 255	Gly
Gln	Pro	Ile	Ile 260	Arg	Ser	Ile	Pro	Gln 265	Gly	Ile	Val	Ala	Ala 270	Trp	Arg
Gln	Arg	Ser 275	Ser	Arg	Asp	Pro	Ser 280	Trp	Arg	Gln	Pro	Glu 285	Arg	Thr	Ile
Leu	Arg 290	Pro	Arg	Phe	Arg	Arg 295	Glu	Val	Glu	ГЛа	Thr 300	Ala	СЛа	Pro	Ser
Gly	Lys	Lys	Ala	Arg	Glu	Ile	Asp	Glu	Ser	Leu	Ile	Phe	Tyr	ГЛа	ГЛа

-continued

305					310					315					320
Trp	Glu	Leu	Glu	Ala 325	Сув	Val	Asp	Ala	Ala 330	Leu	Leu	Ala	Thr	Gln 335	Met
Asp	Arg	Val	Asn 340	Ala	Ile	Pro	Phe	Thr 345	Tyr	Glu	Gln	Leu	Asp 350	Val	Leu
Lys	His	Lys 355	Leu	Asp	Glu	Leu	Tyr 360	Pro	Gln	Gly	Tyr	Pro 365	Glu	Ser	Val
Ile	Gln 370	His	Leu	Gly	Tyr	Leu 375	Phe	Leu	Lys	Met	Ser 380	Pro	Glu	Asp	Ile
Arg 385	Lys	Trp	Asn	Val	Thr 390	Ser	Leu	Glu	Thr	Leu 395	ГÀа	Ala	Leu	Leu	Glu 400
Val	Asn	Lys	Gly	His 405	Glu	Met	Ser	Pro	Gln 410	Ala	Pro	Arg	Arg	Pro 415	Leu
Pro	Gln	Val	Ala 420	Thr	Leu	Ile	Asp	Arg 425	Phe	Val	Lys	Gly	Arg 430	Gly	Gln
Leu	Asp	Lys 435	Asp	Thr	Leu	Asp	Thr 440	Leu	Thr	Ala	Phe	Tyr 445	Pro	Gly	Tyr
Leu	Сув 450	Ser	Leu	Ser	Pro	Glu 455	Glu	Leu	Ser	Ser	Val 460	Pro	Pro	Ser	Ser
Ile 465	Trp	Ala	Val	Arg	Pro 470	Gln	Asp	Leu	Asp	Thr 475	CAa	Asp	Pro	Arg	Gln 480
Leu	Asp	Val	Leu	Tyr 485	Pro	Lys	Ala	Arg	Leu 490	Ala	Phe	Gln	Asn	Met 495	Asn
Gly	Ser	Glu	Tyr 500	Phe	Val	Lys	Ile	Gln 505	Ser	Phe	Leu	Gly	Gly 510	Ala	Pro
Thr	Glu	Asp 515	Leu	Lys	Ala	Leu	Ser 520	Gln	Gln	Asn	Val	Ser 525	Met	Asp	Leu
Ala	Thr 530	Phe	Met	Lys	Leu	Arg 535	Thr	Asp	Ala	Val	Leu 540	Pro	Leu	Thr	Val
Ala 545	Glu	Val	Gln	Lys	Leu 550	Leu	Gly	Pro	His	Val 555	Glu	Gly	Leu	Lys	Ala 560
Glu	Glu	Arg	His	Arg 565	Pro	Val	Arg	Asp	Trp 570	Ile	Leu	Arg	Gln	Arg 575	Gln
Asp	Asp	Leu	580	Thr	Leu	Gly	Leu	Gly 585	Leu	Gln	Gly	Gly	Ile 590	Pro	Asn
Gly	Tyr	Leu 595	Val	Leu	Asp	Leu	Ser 600	Met	Gln	Glu	Ala	Leu 605	Ser	Gly	Thr
Pro	Cys 610	Leu	Leu	Gly	Pro	Gly 615	Pro	Val	Leu	Thr	Val 620	Leu	Ala	Leu	Leu
Leu 625	Ala	Ser	Thr	Leu	Ala 630										
<213 <213 <213 <220 <223 <223		ENGTH ZPE: RGANI EATUR AME / I DCATI THER AH6 46	H: 80 PRT ISM: RE: KEY: ION: INFO	Homo MISO (1) DRMA	C_FEA	TURE	2	equer	nce i	Erom	Genl	oank	acce	essio	on number
Met 1	Gly	Arg	Ala	Met 5	Val	Ala	Arg	Leu	Gly 10	Leu	Gly	Leu	Leu	Leu 15	Leu
Nla	Leu	Leu	Leu	Pro	Thr	Gln	Tla	Tree	Car	Car	Glu	Thr	Thr	Thr	Clv

Ala Leu Leu Pro Thr Gln Ile Tyr Ser Ser Glu Thr Thr Thr Gly

```
Thr Ser Ser Asn Ser Ser Gln Ser Thr Ser Asn Ser Gly Leu Ala Pro
                   40
Asn Pro Thr Asn Ala Thr Thr Lys Ala Ala Gly Gly Ala Leu Gln Ser
Thr Ala Ser Leu Phe Val Val Ser Leu Ser Leu Leu His Leu Tyr Ser
    70
<210> SEQ ID NO 169
<211> LENGTH: 40
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(40)
<223 > OTHER INFORMATION: CD22 sequence from Genbank accession number
     BAA36576
<400> SEQUENCE: 169
Val Arg Arg Ala Pro Leu Ser Glu Gly Pro His Ser Leu Gly Cys Tyr
Asn Pro Met Met Glu Asp Gly Ile Ser Tyr Thr Thr Leu Arg Phe Pro
Glu Met Asn Ile Pro Arg Thr Gly
      35
<210> SEO ID NO 170
<211> LENGTH: 272
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(272)
<223> OTHER INFORMATION: CD25 sequence from Genbank accession number
     NP_000408
<400> SEQUENCE: 170
Met Asp Ser Tyr Leu Leu Met Trp Gly Leu Leu Thr Phe Ile Met Val
Pro Gly Cys Gln Ala Glu Leu Cys Asp Asp Pro Pro Glu Ile Pro
His Ala Thr Phe Lys Ala Met Ala Tyr Lys Glu Gly Thr Met Leu Asn
Cys Glu Cys Lys Arg Gly Phe Arg Arg Ile Lys Ser Gly Ser Leu Tyr
Met Leu Cys Thr Gly Asn Ser Ser His Ser Ser Trp Asp Asn Gln Cys
Gln Cys Thr Ser Ser Ala Thr Arg Asn Thr Thr Lys Gln Val Thr Pro
Gln Pro Glu Glu Gln Lys Glu Arg Lys Thr Thr Glu Met Gln Ser Pro
                             105
Met Gln Pro Val Asp Gln Ala Ser Leu Pro Gly His Cys Arg Glu Pro
                  120
Pro Pro Trp Glu Asn Glu Ala Thr Glu Arg Ile Tyr His Phe Val Val
                     135
Gly Gln Met Val Tyr Tyr Gln Cys Val Gln Gly Tyr Arg Ala Leu His
     150
                            155
Arg Gly Pro Ala Glu Ser Val Cys Lys Met Thr His Gly Lys Thr Arg
                                  170
```

-continued

Trp Thr Gln Pro Gln Leu Ile Cys Thr Gly Glu Met Glu Thr Ser Gln 185 Phe Pro Gly Glu Glu Lys Pro Gln Ala Ser Pro Glu Gly Arg Pro Glu Ser Glu Thr Ser Cys Leu Val Thr Thr Thr Asp Phe Gln Ile Gln Thr 215 Glu Met Ala Ala Thr Met Glu Thr Ser Ile Phe Thr Thr Glu Tyr Gln Val Ala Val Ala Gly Cys Val Phe Leu Leu Ile Ser Val Leu Leu Leu Ser Gly Leu Thr Trp Gln Arg Arg Gln Arg Lys Ser Arg Arg Thr Ile <210> SEQ ID NO 171 <211> LENGTH: 361 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (1)..(361) <223> OTHER INFORMATION: CD174 sequence from Genbank accession number NP_000140 <400> SEOUENCE: 171 Met Asp Pro Leu Gly Ala Ala Lys Pro Gln Trp Pro Trp Arg Arg Cys 10 Leu Ala Ala Leu Leu Phe Gln Leu Leu Val Ala Val Cys Phe Phe Ser Tyr Leu Arg Val Ser Arg Asp Asp Ala Thr Gly Ser Pro Arg Ala Pro 40 Ser Gly Ser Ser Arg Gln Asp Thr Thr Pro Thr Arg Pro Thr Leu Leu Ile Leu Leu Trp Thr Trp Pro Phe His Ile Pro Val Ala Leu Ser Arg Cys Ser Glu Met Val Pro Gly Thr Ala Asp Cys His Ile Thr Ala Asp Arg Lys Val Tyr Pro Gln Ala Asp Thr Val Ile Val His His Trp Asp 105 Ile Met Ser Asn Pro Lys Ser Arg Leu Pro Pro Ser Pro Arg Pro Gln Gly Gln Arg Trp Ile Trp Phe Asn Leu Glu Pro Pro Pro Asn Cys Gln His Leu Glu Ala Leu Asp Arg Tyr Phe Asn Leu Thr Met Ser Tyr Arg Ser Asp Ser Asp Ile Phe Thr Pro Tyr Gly Trp Leu Glu Pro Trp Ser 165 170 175 Gly Gln Pro Ala His Pro Pro Leu Asn Leu Ser Ala Lys Thr Glu Leu 185 Val Ala Trp Ala Val Ser Asn Trp Lys Pro Asp Ser Ala Arg Val Arg Tyr Tyr Gln Ser Leu Gln Ala His Leu Lys Val Asp Val Tyr Gly Arg Ser His Lys Pro Leu Pro Lys Gly Thr Met Met Glu Thr Leu Ser Arg 230 235 Tyr Lys Phe Tyr Leu Ala Phe Glu Asn Ser Leu His Pro Asp Tyr Ile 250

-continued

Thr Glu Lys Leu Trp Arg Asn Ala Leu Glu Ala Trp Ala Val Pro Val Val Leu Gly Pro Ser Arg Ser Asn Tyr Glu Arg Phe Leu Pro Pro Asp Ala Phe Ile His Val Asp Asp Phe Gln Ser Pro Lys Asp Leu Ala Arg Tyr Leu Gln Glu Leu Asp Lys Asp His Ala Arg Tyr Leu Ser Tyr Phe Arg Trp Arg Glu Thr Leu Arg Pro Arg Ser Phe Ser Trp Ala Leu Asp Phe Cys Lys Ala Cys Trp Lys Leu Gln Gln Glu Ser Arg Tyr Gln Thr Val Arg Ser Ile Ala Ala Trp Phe Thr <210> SEQ ID NO 172 <211> LENGTH: 420 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: MISC FEATURE <222> LOCATION: (1)..(420) <223> OTHER INFORMATION: TPBG sequence from Genbank accession number CAA09930 <400> SEQUENCE: 172 Met Pro Gly Gly Cys Ser Arg Gly Pro Ala Ala Gly Asp Gly Arg Leu Arg Leu Ala Arg Leu Ala Leu Val Leu Leu Gly Trp Val Ser Ser Ser Ser Pro Thr Ser Ser Ala Ser Ser Phe Ser Ser Ser Ala Pro Phe Leu Ala Ser Ala Val Ser Ala Gln Pro Pro Leu Pro Asp Gln Cys Pro Ala Leu Cys Glu Cys Ser Glu Ala Ala Arg Thr Val Lys Cys Val Asn Arg Asn Leu Thr Glu Val Pro Thr Asp Leu Pro Ala Tyr Val Arg Asn Leu Phe Leu Thr Gly Asn Gln Leu Ala Val Leu Pro Ala Gly Ala Phe Ala Arg Arg Pro Pro Leu Ala Glu Leu Ala Ala Leu Asn Leu Ser Gly Ser Arg Leu Asp Glu Val Arg Ala Gly Ala Phe Glu His Leu Pro Ser Leu Arg Gln Leu Asp Leu Ser His Asn Pro Leu Ala Asp Leu Ser Pro Phe Ala Phe Ser Gly Ser Asn Ala Ser Val Ser Ala Pro Ser Pro Leu Val 170 Glu Leu Ile Leu Asn His Ile Val Pro Pro Glu Asp Glu Arg Gln Asn Arg Ser Phe Glu Gly Met Val Val Ala Ala Leu Leu Ala Gly Arg Ala 200 Leu Gln Gly Leu Arg Arg Leu Glu Leu Ala Ser Asn His Phe Leu Tyr 215 Leu Pro Arg Asp Val Leu Ala Gln Leu Pro Ser Leu Arg His Leu Asp

-continued

Leu Ser Asn Asn Ser Leu Val Ser Leu Thr Tyr Val Ser Phe Arg Asn 250 Leu Thr His Leu Glu Ser Leu His Leu Glu Asp Asn Ala Leu Lys Val Leu His Asn Gly Thr Leu Ala Glu Leu Gln Gly Leu Pro His Ile Arg Val Phe Leu Asp Asn Asn Pro Trp Val Cys Asp Cys His Met Ala Asp Met Val Thr Trp Leu Lys Glu Thr Glu Val Val Gln Gly Lys Asp Arg Leu Thr Cys Ala Tyr Pro Glu Lys Met Arg Asn Arg Val Leu Leu Glu Leu Asn Ser Ala Asp Leu Asp Cys Asp Pro Ile Leu Pro Pro Ser Leu Gln Thr Ser Tyr Val Phe Leu Gly Ile Val Leu Ala Leu Ile Gly Ala Ile Phe Leu Leu Val Leu Tyr Leu Asn Arg Lys Gly Ile Lys Lys Trp 370 380 Met His Asn Ile Arg Asp Ala Cys Arg Asp His Met Glu Gly Tyr His 395 Tyr Arg Tyr Glu Ile Asn Ala Asp Pro Arg Leu Thr Asn Leu Ser Ser Asn Ser Asp Val 420 <210> SEO ID NO 173 <211> LENGTH: 848 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (1)..(848) <223> OTHER INFORMATION: CD56 sequence from Genbank accession number NP_000606 <400> SEQUENCE: 173 Met Leu Gl
n Thr Lys Asp Leu Ile Tr
p Thr Leu Phe Phe Leu Gly Thr $\,$ Ala Val Ser Leu Gln Val Asp Ile Val Pro Ser Gln Gly Glu Ile Ser Val Gly Glu Ser Lys Phe Phe Leu Cys Gln Val Ala Gly Asp Ala Lys Asp Lys Asp Ile Ser Trp Phe Ser Pro Asn Gly Glu Lys Leu Thr Pro Asn Gln Gln Arg Ile Ser Val Val Trp Asn Asp Asp Ser Ser Ser Thr 65 70 75 80 Leu Thr Ile Tyr Asn Ala Asn Ile Asp Asp Ala Gly Ile Tyr Lys Cys Val Val Thr Gly Glu Asp Gly Ser Glu Ser Glu Ala Thr Val Asn Val Lys Ile Phe Gln Lys Leu Met Phe Lys Asn Ala Pro Thr Pro Gln Glu Phe Arg Glu Gly Glu Asp Ala Val Ile Val Cys Asp Val Val Ser Ser 135 Leu Pro Pro Thr Ile Ile Trp Lys His Lys Gly Arg Asp Val Ile Leu 155

Lys	Lys	Asp	Val	Arg 165	Phe	Ile	Val	Leu	Ser 170	Asn	Asn	Tyr	Leu	Gln 175	Ile
Arg	Gly	Ile	Lys 180	Lys	Thr	Asp	Glu	Gly 185	Thr	Tyr	Arg	CAa	Glu 190	Gly	Arg
Ile	Leu	Ala 195	Arg	Gly	Glu	Ile	Asn 200	Phe	Lys	Asp	Ile	Gln 205	Val	Ile	Val
Asn	Val 210	Pro	Pro	Thr	Ile	Gln 215	Ala	Arg	Gln	Asn	Ile 220	Val	Asn	Ala	Thr
Ala 225	Asn	Leu	Gly	Gln	Ser 230	Val	Thr	Leu	Val	Сув 235	Asp	Ala	Glu	Gly	Phe 240
Pro	Glu	Pro	Thr	Met 245	Ser	Trp	Thr	Lys	Asp 250	Gly	Glu	Gln	Ile	Glu 255	Gln
Glu	Glu	Asp	Asp 260	Glu	Lys	Tyr	Ile	Phe 265	Ser	Asp	Asp	Ser	Ser 270	Gln	Leu
Thr	Ile	Lys 275	ГЛа	Val	Asp	Lys	Asn 280	Asp	Glu	Ala	Glu	Tyr 285	Ile	CÀa	Ile
Ala	Glu 290	Asn	Lys	Ala	Gly	Glu 295	Gln	Asp	Ala	Thr	Ile 300	His	Leu	ГЛа	Val
Phe 305	Ala	ГÀа	Pro	ГÀа	Ile 310	Thr	Tyr	Val	Glu	Asn 315	Gln	Thr	Ala	Met	Glu 320
Leu	Glu	Glu	Gln	Val 325	Thr	Leu	Thr	Cys	Glu 330	Ala	Ser	Gly	Asp	Pro 335	Ile
Pro	Ser	Ile	Thr 340	Trp	Arg	Thr	Ser	Thr 345	Arg	Asn	Ile	Ser	Ser 350	Glu	Glu
ГÀа	Thr	Leu 355	Asp	Gly	His	Met	Val 360	Val	Arg	Ser	His	Ala 365	Arg	Val	Ser
Ser	Leu 370	Thr	Leu	Lys	Ser	Ile 375	Gln	Tyr	Thr	Asp	Ala 380	Gly	Glu	Tyr	Ile
Cys 385	Thr	Ala	Ser	Asn	Thr 390	Ile	Gly	Gln	Asp	Ser 395	Gln	Ser	Met	Tyr	Leu 400
Glu	Val	Gln	Tyr	Ala 405	Pro	Lys	Leu	Gln	Gly 410	Pro	Val	Ala	Val	Tyr 415	Thr
Trp	Glu	Gly	Asn 420	Gln	Val	Asn	Ile	Thr 425	Cys	Glu	Val	Phe	Ala 430	Tyr	Pro
Ser	Ala	Thr 435	Ile	Ser	Trp	Phe	Arg 440	Asp	Gly	Gln	Leu	Leu 445	Pro	Ser	Ser
Asn	Tyr 450	Ser	Asn	Ile	ГÀа	Ile 455	Tyr	Asn	Thr	Pro	Ser 460	Ala	Ser	Tyr	Leu
Glu 465	Val	Thr	Pro	Asp	Ser 470	Glu	Asn	Asp	Phe	Gly 475	Asn	Tyr	Asn	CÀa	Thr 480
Ala	Val	Asn	Arg	Ile 485	Gly	Gln	Glu	Ser	Leu 490	Glu	Phe	Ile	Leu	Val 495	Gln
Ala	Asp	Thr	Pro 500	Ser	Ser	Pro	Ser	Ile 505	Asp	Gln	Val	Glu	Pro 510	Tyr	Ser
Ser	Thr	Ala 515	Gln	Val	Gln	Phe	Asp 520	Glu	Pro	Glu	Ala	Thr 525	Gly	Gly	Val
Pro	Ile 530	Leu	Lys	Tyr	Lys	Ala 535	Glu	Trp	Arg	Ala	Val 540	Gly	Glu	Glu	Val
Trp 545	His	Ser	Lys	Trp	Tyr 550	Asp	Ala	Lys	Glu	Ala 555	Ser	Met	Glu	Gly	Ile 560
Val	Thr	Ile	Val	Gly 565	Leu	Lys	Pro	Glu	Thr 570	Thr	Tyr	Ala	Val	Arg 575	Leu
Ala	Ala	Leu	Asn	Gly	Lys	Gly	Leu	Gly	Glu	Ile	Ser	Ala	Ala	Ser	Glu

325 326

-continued

585

580

Phe	Lys	Thr 595	Gln	Pro	Val	Gln	Gly 600	Glu	Pro	Ser	Ala	Pro 605	Lys	Leu	Glu
Gly	Gln 610	Met	Gly	Glu	Asp	Gly 615	Asn	Ser	Ile	Lys	Val 620	Asn	Leu	Ile	Lys
Gln 625	Asp	Asp	Gly	Gly	Ser 630	Pro	Ile	Arg	His	Tyr 635	Leu	Val	Arg	Tyr	Arg 640
Ala	Leu	Ser	Ser	Glu 645	Trp	Lys	Pro	Glu	Ile 650	Arg	Leu	Pro	Ser	Gly 655	Ser
Asp	His	Val	Met 660	Leu	Lys	Ser	Leu	Asp 665	_	Asn	Ala	Glu	Tyr 670	Glu	Val
Tyr	Val	Val 675	Ala	Glu	Asn	Gln	Gln 680	Gly	Lys	Ser	Lys	Ala 685	Ala	His	Phe
Val	Phe 690	Arg	Thr	Ser	Ala	Gln 695	Pro	Thr	Ala	Ile	Pro 700	Ala	Asn	Gly	Ser
Pro 705	Thr	Ser	Gly	Leu	Ser 710	Thr	Gly	Ala	Ile	Val 715	Gly	Ile	Leu	Ile	Val 720
Ile	Phe	Val	Leu	Leu 725	Leu	Val	Val	Val	Asp 730	Ile	Thr	Сув	Tyr	Phe 735	Leu
Asn	Lys	Cys	Gly 740	Leu	Phe	Met	Cys	Ile 745	Ala	Val	Asn	Leu	Сув 750	Gly	Lys
Ala	Gly	Pro 755	Gly	Ala	ГÀа	Gly	Lys 760	Asp	Met	Glu	Glu	Gly 765	Lys	Ala	Ala
Phe	Ser 770	Lys	Asp	Glu	Ser	Lys 775	Glu	Pro	Ile	Val	Glu 780	Val	Arg	Thr	Glu
Glu 785	Glu	Arg	Thr	Pro	Asn 790	His	Asp	Gly	Gly	Lув 795	His	Thr	Glu	Pro	Asn 800
Glu	Thr	Thr	Pro	Leu 805	Thr	Glu	Pro	Glu	Lys 810	Gly	Pro	Val	Glu	Ala 815	Lys
Pro	Glu	СЛа	Gln 820	Glu	Thr	Glu	Thr	Lys 825	Pro	Ala	Pro	Ala	Glu 830	Val	Lys
Thr	Val	Pro 835	Asn	Asp	Ala	Thr	Gln 840	Thr	ГÀа	Glu	Asn	Glu 845	Ser	ГÀа	Ala
<211 <212 <213 <220 <221 <221)> FI L> NA 2> L0	ENGTI (PE: RGAN: EATUI AME/I DCAT:	H: 2' PRT ISM: RE: KEY: ION:	75 Homo MISO (1)	C_FEA	ATURE	2							_	
		ccess	sion	numl				lect	:1n-1	ııke	mole	ecule	9-1 :	rom	Genbank
					Phe	Thr	Tyr	Ser	Ser 10	Met	Ser	Glu	Glu	Val 15	Thr
Tyr	Ala	Asp	Leu 20	Gln	Phe	Gln	Asn	Ser 25	Ser	Glu	Met	Glu	Lys	Ile	Pro
Glu	Ile	Gly 35	Lys	Phe	Gly	Glu	Lys 40	Ala	Pro	Pro	Ala	Pro 45	Ser	His	Val
Trp	Arg 50	Pro	Ala	Ala	Leu	Phe 55	Leu	Thr	Leu	Leu	60 CAa	Leu	Leu	Leu	Leu
Ile 65	Gly	Leu	Gly	Val	Leu 70	Ala	Ser	Met	Phe	His 75	Val	Thr	Leu	Lys	Ile 80
Glu	Met	Lys	Lys	Met	Asn	Lys	Leu	Gln	Asn	Ile	Ser	Glu	Glu	Leu	Gln

_															
				85					90					95	
Arg	Asn	Ile	Ser 100	Leu	Gln	Leu	Met	Ser 105	Asn	Met	Asn	Ile	Ser 110	Asn	Lys
Ile	Arg	Asn 115	Leu	Ser	Thr	Thr	Leu 120	Gln	Thr	Ile	Ala	Thr 125	Lys	Leu	Сув
Arg	Glu 130	Leu	Tyr	Ser	Lys	Glu 135	Gln	Glu	His	Lys	Cys 140	Lys	Pro	Cys	Pro
Arg 145	Arg	Trp	Ile	Trp	His 150	Lys	Asp	Ser	Сув	Tyr 155	Phe	Leu	Ser	Asp	Asp 160
Val	Gln	Thr	Trp	Gln 165	Glu	Ser	Lys	Met	Ala 170	CÀa	Ala	Ala	Gln	Asn 175	Ala
Ser	Leu	Leu	Lys 180	Ile	Asn	Asn	Lys	Asn 185	Ala	Leu	Glu	Phe	Ile 190	ГÀа	Ser
Gln	Ser	Arg 195	Ser	Tyr	Asp	Tyr	Trp 200	Leu	Gly	Leu	Ser	Pro 205	Glu	Glu	Asp
Ser	Thr 210	Arg	Gly	Met	Arg	Val 215	Asp	Asn	Ile	Ile	Asn 220	Ser	Ser	Ala	Trp
Val 225	Ile	Arg	Asn	Ala	Pro 230	Asp	Leu	Asn	Asn	Met 235	Tyr	CAa	Gly	Tyr	Ile 240
Asn	Arg	Leu	Tyr	Val 245	Gln	Tyr	Tyr	His	Сув 250	Thr	Tyr	ГÀв	Gln	Arg 255	Met
Ile	Càa	Glu	Lys 260	Met	Ala	Asn	Pro	Val 265	Gln	Leu	Gly	Ser	Thr 270	Tyr	Phe
Arg	Glu	Ala 275													
<213 <213 <220 <223 <223		PE: RGAN: EATUI AME/I CAT: THER	PRT ISM: RE: (EY: ION: INF(Pset VAR: (1) ORMA:	IANT (6:	13) : PE	var:			m Gei	nbanl	k Aco	cess:	ion r	number GI
< 400	O> SI	EQUEI	ICE :	175											
Ala 1	Glu	Glu	Ala	Phe 5	Asp	Leu	Trp	Asn	Glu 10	Сув	Ala	Lys	Ala	Суз 15	Val
Leu	Asp	Leu	Lys 20	Asp	Gly	Val	Arg	Ser 25	Ser	Arg	Met	Ser	Val 30	Asp	Pro
Ala	Ile	Ala 35	Asp	Thr	Asn	Gly	Gln 40	Gly	Val	Leu	His	Tyr 45	Ser	Met	Val
Leu	Glu 50	Gly	Gly	Asn	Asp	Ala 55	Leu	Lys	Leu	Ala	Ile 60	Asp	Asn	Ala	Leu
Ser 65	Ile	Thr	Ser	Asp	Gly 70	Leu	Thr	Ile	Arg	Leu 75	Glu	Gly	Gly	Val	Glu 80
Pro	Asn	Lys	Pro		Arg	Tyr	Ser	Tyr	Thr 90	Arg	Gln	Ala	Arg	Gly 95	Ser
Trp				85					50						
•	Ser	Leu	Asn 100		Leu	Val	Pro	Ile 105		His	Glu	Lys	Pro 110	Ser	Asn
_	Ser Lys		100	Trp				105	Gly			_	110		
Ile		Val 115	100 Phe	Trp Ile	His	Glu	Leu 120	105 Asn	Gly Ala	Gly	Asn	Gln 125	110 Leu	Ser	His

Met Gln Pro Thr Leu 165 Ala Ile Ser His Ala Gly Val Ser Val 175 Met 175 Ala Gln Ala Gln Pro Arg Glu Lys Arg Trp Ser Glu Trp Ala Ser Gly Lys Val Leu Cys Leu Leu Asp Pro Leu Asp Gly Val Tyr Asn Tyr Leu Ala Gln Gln Arg Cys Asn Leu Asp Asp Thr Trp Glu Gly Lys Ile Lys 1le 220 Tyr Asp Thr Tyr Asp Leu Asp Ile Lys 1le 200 Lys Ile Lys 1le Lys 1le Lys 1le Lys 240 1le Lys Lys 230 Lys
180 185 190 190 191 190
195 200 205 216 217 218 219 215 216 217 217 218 219 218 218 219 218 219 218 219 218 219 219 218 219
210 215 220 Tyr Arg Val Leu Ala Gly Asn Pro 225 Asn Pro Ala Lys His Asp Leu Asp Leu Asp 240 Pro Thr Val Ile Ser His Arg Leu His Phe Pro Glu Gly Gly Ser Leu 255 Ala Ala Leu Thr Ala His Gln Ala Cys His Leu Pro Leu Glu Thr Phe 260 Thr Arg His Arg Gln Pro Arg Gly Trp Glu Gln Leu Glu Gln Cys Gly 285 Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr Leu Ala Ala Arg Leu Ser 290 Trp Asn Gln Val Asp Gln Val Ile Arg Asn Ala Leu Ala Ser Pro Gly 305 Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg Glu Glu Ser Glu Arg Phe Val Arg 340 Arg Leu Ala Leu Thr Leu Ala Ala Ala Glu Ser Glu Arg Phe Val Arg 340
225 230 235 240 Pro Thr Val Ile Ser His Arg Leu His Phe 250 Pro Glu Gly Gly Ser Leu 255 Leu 255 Ala Ala Leu Thr Ala His Gln Ala Cys His Leu Pro Leu Glu Thr Phe 260 Ala Cys His Leu Pro Leu Glu Gln Thr Phe 270 Thr Arg His Arg Gln Pro Arg Gly Trp Glu Gln Leu Glu Gln Cys Gly 285 Gly 285 Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr Leu Ala Ala Arg Leu Ser 290 Ala Leu Ala Arg Leu Ser 310 Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg Asp Ala Leu Ala Ser Pro Gly 320 Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg Glu Glu Gln Pro Glu Gln Ala 335 Arg Leu Ala Leu Thr Leu Ala Ala Ala Glu Ser Glu Arg Phe Val Arg 340 Ala Glu Ser Glu Arg Phe Val Arg 350
245 250 255 Ala Ala Leu Thr Ala His Gln Ala Cys His Leu Pro Leu Glu Thr Phe 260 270 Thr Arg His Arg Gln Pro Arg Gly Trp Glu Gln Leu Glu Gln Cys Gly 280 Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr Leu Ala Ala Arg Leu Ser 290 Trp Asn Gln Val Asp Gln Val Ile Arg Asn Ala Leu Ala Ser Pro Gly 300 Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg Glu Gln Pro Glu Gln Ala Arg Leu Ala Sag Ser Glu Arg Bash Ala Leu Ala Ser Pro Gly 335 Arg Leu Ala Leu Thr Leu Ala Ala Ala Glu Ser Glu Arg Phe Val Arg 340
Thr Arg His Arg Gln Pro Arg Gly Z80 Trp Glu Gln Leu Gly Gln Cys Gly Z85 Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr Leu Ala Arg Leu Arg Leu Ser Trp Asn Gln Val Asp Gln Val Ile Arg Asn Ala Leu Ala Ser Pro Gly 320 Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg Glu Gln Pro Gly Ala Arg Leu Ala Leu Ala Ala Ala Ala Ser Glu Arg Phe Val Arg Arg Leu Ala Leu Ala Ala Ala Glu Ser Glu Arg Phe Val Arg Arg Leu Ala Ala Ala Ala Glu Ser Glu Arg
Try Pro Val Gln Arg Leu Val Ala Leu Try Leu Ala Ala Arg Leu Ser 290 Trp Asn Gln Val Asp Gln Val IIle Arg Asn Ala Leu Ala Ser Pro Gly 315 Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg Glu Gln Pro Glu Gln Ala 325 Arg Leu Ala Leu Thr Leu Ala Ala Ala Glu Ser Glu Arg Phe Val Arg 340
Trp Asn Gln Val Asp Gln Val Ile Arg Asn Ala Leu Ala Ser Pro Gly 305 Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg Glu Gln Pro Glu Gln Ala 325 Arg Leu Ala Leu Thr Leu Ala Ala Ala Glu Ser Glu Arg Phe Val Arg 340
310 315 320 Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg Glu Gln Pro Glu Gln Ala 325 Arg Leu Ala Leu Thr Leu Ala Ala Ala Glu Ser Glu Arg Phe Val Arg 340
Arg Leu Ala Leu Thr Leu Ala Ala Ala Glu Ser Glu Arg Phe Val Arg 340 345 350
340 345 350
Cln Cly Thr Cly Acn Acn Cly Ale Cly Ale Ale Acn Ale Acn Vel Vel
Gln Gly Thr Gly Asn Asp Glu Ala Gly Ala Ala Asn Ala Asp Val Val 355 360 365
Ser Leu Thr Cys Pro Val Ala Ala Gly Glu Cys Ala Gly Pro Ala Asp 370 375 380
Ser Gly Asp Ala Leu Leu Glu Arg Asn Tyr Pro Thr Gly Ala Glu Phe 385 390 395 400
Leu Gly Asp Gly Gly Asp Val Ser Phe Ser Thr Arg Gly Thr Gln Asn 405 410 415
Trp Thr Val Glu Arg Leu Leu Gln Ala His Arg Gln Leu Glu Glu Arg 420 425 430
Gly Tyr Val Phe Val Gly Tyr His Gly Thr Phe Leu Glu Ala Ala Gln 435 440 445
Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser Gln Asp Leu Asp Ala 450 455 460
Ile Trp Arg Gly Phe Tyr Ile Ala Gly Asp Pro Ala Leu Ala Tyr Gly 465 470 480
Tyr Ala Gln Asp Gln Glu Pro Asp Ala Arg Gly Arg Ile Arg Asn Gly 485 490 495
Ala Leu Leu Arg Val Tyr Val Pro Arg Ser Ser Leu Pro Gly Phe Tyr 500 505 510
Arg Thr Ser Leu Thr Leu Ala Ala Pro Glu Ala Ala Gly Glu Val Glu 515 520 525
Arg Leu Ile Gly His Pro Leu Pro Leu Arg Leu Asp Ala Ile Thr Gly 530 540
Pro Glu Glu Glu Gly Gly Arg Leu Glu Thr Ile Leu Gly Trp Pro Leu 545 550 550 550
Ala Glu Arg Thr Val Val Ile Pro Ser Ala Ile Pro Thr Asp Pro Arg 565 570 575

```
Asn Val Gly Gly Asp Leu Asp Pro Ser Ser Ile Pro Asp Lys Glu Gln
                               585
Ala Ile Ser Ala Leu Pro Asp Tyr Ala Ser Gln Pro Gly Lys Pro Pro
        595
                            600
Arg Glu Asp Leu Lys
    610
<210> SEQ ID NO 176
<211> LENGTH: 10
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Modified Kozak consensus sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(10)
<223> OTHER INFORMATION: consensus sequence
<400> SEQUENCE: 176
                                                                      10
qccaccatqq
<210> SEQ ID NO 177
<211> LENGTH: 347
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: pIEX02-228 PE-A amino acid substitution mutant
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (141) .. (141)
<223> OTHER INFORMATION: Amino acid change Ile-141 to Ala-141
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (152)..(152)
<223> OTHER INFORMATION: Amino acid change Thr-152 to Arg-152
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (197) .. (197)
<223> OTHER INFORMATION: Amino acid change Asp-197 to Lys-197
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (241) .. (241)
<223> OTHER INFORMATION: Amino acid change Ser-241 to Thr-241
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (326)..(326)
<223> OTHER INFORMATION: Amino acid change Gln-326 to Glu-326
<400> SEQUENCE: 177
Pro Glu Gly Gly Ser Leu Ala Ala Leu Thr Ala His Gln Ala Cys His
Leu Pro Leu Glu Thr Phe Thr Arg His Arg Gln Pro Arg Gly Trp Glu
Gln Leu Glu Gln Cys Gly Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr
Leu Ala Ala Arg Leu Ser Trp Asn Gln Val Asp Gln Val Ile Arg Asn
Ala Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg
Glu Gln Pro Glu Gln Ala Arg Leu Ala Leu Thr Leu Ala Ala Ala Glu
Ser Glu Arg Phe Val Arg Gln Gly Thr Gly Asn Asp Glu Ala Gly Ala
                               105
Ala Ser Gly Pro Ala Asp Ser Gly Asp Ala Leu Leu Glu Arg Asn Tyr
      115
                  120
```

-continued

Pro Thr Gly Ala Glu Phe Leu Gly Asp Gly Gly Asp Ala Ser Phe Ser 135 Thr Arg Gly Thr Gln Asn Trp Arg Val Glu Arg Leu Leu Gln Ala His 150 Arg Gln Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr His Gly Thr Phe Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg 185 Ser Gln Asp Leu Lys Ala Ile Trp Arg Gly Phe Tyr Ile Ala Gly Asp Pro Ala Leu Ala Tyr Gly Tyr Ala Gln Asp Gln Glu Pro Asp Ala Arg Gly Arg Ile Arg Asn Gly Ala Leu Leu Arg Val Tyr Val Pro Arg Ser Thr Leu Pro Gly Phe Tyr Arg Thr Gly Leu Thr Leu Ala Ala Pro Glu 250 Ala Ala Gly Glu Val Glu Arg Leu Ile Gly His Pro Leu Pro Leu Arg 265 260 Leu Asp Ala Ile Thr Gly Pro Glu Glu Glu Gly Gly Arg Leu Glu Thr 280 Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr Val Val Ile Pro Ser Ala Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp Leu Asp Pro Ser Ser 310 Ile Pro Asp Lys Glu Glu Ala Ile Ser Ala Leu Pro Asp Tyr Ala Ser 325 330 Gln Pro Gly Lys Pro Pro Arg Glu Asp Leu Lys <210> SEQ ID NO 178 <211> LENGTH: 347 <212> TYPE: PRT <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: pIEX02-244 PE-A amino acid substitution mutant <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (141) .. (141) <223> OTHER INFORMATION: Amino acid change Ile-141 to Thr-141 <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (152)..(152) <223> OTHER INFORMATION: Amino acid change Thr-152 to Ala-152 <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (192) .. (192) <223> OTHER INFORMATION: Amino acid change Arg-192 to Ala-192 <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (197) .. (197) <223> OTHER INFORMATION: Amino acid change Asp-197 to Lys-197 <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (241) .. (241) <223> OTHER INFORMATION: Amino acid change Ser-241 to Thr-241 <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (326)..(326) <223> OTHER INFORMATION: Amino acid change Gln-326 to Glu-326 <400> SEOUENCE: 178 Pro Glu Gly Gly Ser Leu Ala Ala Leu Thr Ala His Gln Ala Cys His 10

Leu Pro Leu Glu Thr Phe Thr Arg His Arg Gln Pro Arg Gly Trp Glu Gln Leu Glu Gln Cys Gly Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr Leu Ala Ala Arg Leu Ser Trp Asn Gln Val Asp Gln Val Ile Arg Asn Ala Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg Glu Gln Pro Glu Gln Ala Arg Leu Ala Leu Thr Leu Ala Ala Ala Glu Ser Glu Arg Phe Val Arg Gln Gly Thr Gly Asn Asp Glu Ala Gly Ala Ala Ser Gly Pro Ala Asp Ser Gly Asp Ala Leu Leu Glu Arg Asn Tyr Pro Thr Gly Ala Glu Phe Leu Gly Asp Gly Gly Asp Thr Ser Phe Ser 130 135 Thr Arg Gly Thr Gln Asn Trp Ala Val Glu Arg Leu Leu Gln Ala His 150 155 Arg Gln Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr His Gly Thr Phe Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Ala 185 Ser Gln Asp Leu Lys Ala Ile Trp Arg Gly Phe Tyr Ile Ala Gly Asp 200 Pro Ala Leu Ala Tyr Gly Tyr Ala Gln Asp Gln Glu Pro Asp Ala Arg 215 Gly Arg Ile Arg Asn Gly Ala Leu Leu Arg Val Tyr Val Pro Arg Ser Thr Leu Pro Gly Phe Tyr Arg Thr Gly Leu Thr Leu Ala Ala Pro Glu 250 Ala Ala Gly Glu Val Glu Arg Leu Ile Gly His Pro Leu Pro Leu Arg 265 Leu Asp Ala Ile Thr Gly Pro Glu Glu Glu Gly Gly Arg Leu Glu Thr Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr Val Val Ile Pro Ser Ala Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp Leu Asp Pro Ser Ser Ile Pro Asp Lys Glu Glu Ala Ile Ser Ala Leu Pro Asp Tyr Ala Ser Gln Pro Gly Lys Pro Pro Arg Glu Asp Leu Lys 340 345 <210> SEQ ID NO 179 <211> LENGTH: 347 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: pIEX02-246 PE-A amino acid substitution mutant <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (141) .. (141) <223> OTHER INFORMATION: Amino acid change Ile-141 to Ala-141 <220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (152)..(152)

<223> OTHER INFORMATION: Amino acid change Thr-152 to Ala-152

<220)> FE	EATUF	RE:												
				MISC	_FEA	TURE	:								
<222	2 > LC	CATI	ON:	(192	2)	(192)									
				DRMAT	CION	: Am:	ino a	acid	char	nge I	Arg-1	L92 t	:0 Al	.a-19	92
)> FE														
						TURE									
						(197)			-1	7				10	
	3 > 01) > FE			ORMAT	LION:	: Am:	lno a	acıa	cnar	ige A	Asp-1	L9 / T	ю гу	/S-15	9 /
				MTSC	* FFZ	TURE	,								
						(241)									
						: Am:		acid	char	nae S	Ser-2	241 t	o Th	r-24	11
)> FE														
<221	> NA	ME/F	EY:	MISC	_FEA	TURE	:								
<222	2 > LC	CATI	ON:	(326	5)	(326)									
<223	3 > 07	HER	INF	RMAT	CION	: Am:	ino a	acid	char	nge (3ln-3	326 t	:0 G]	.u-32	26
< 400)> SE	EQUEN	ICE :	179											
_	~ 1	~ 1	~7	~					m1			~7		~	
Pro 1	GIU	GIY	GIY	ser 5	ьeu	Ala	Ата	ьeu	Thr 10	Ата	HIS	GIn	АТА	Cys 15	HIS
1				5					10					12	
Len	Pro	Len	Glu	Thr	Phe	Thr	Δra	His	Δra	Gln	Pro	Ara	Glv	Trn	Glu
Lcu	110	LCu	20		1110		11119	25	9	0111	110	9	30	111	O_L u
Gln	Leu	Glu	Gln	Cys	Gly	Tyr	Pro	Val	Gln	Arg	Leu	Val	Ala	Leu	Tyr
		35		•	•	•	40			_		45			•
Leu	Ala	Ala	Arg	Leu	Ser	Trp	Asn	Gln	Val	Asp	Gln	Val	Ile	Arg	Asn
	50					55					60				
	Leu	Ala	Ser	Pro		Ser	Gly	Gly	Asp		Gly	Glu	Ala	Ile	_
65					70					75					80
a1	G1	D	a1	G1	77-	7	Ŧ	77.	.	m1	.	77.	77.	77.	G1
GIU	GIN	Pro	GIU		Ата	Arg	ьeu	Ата		Thr	ьeu	АТА	АТА		GIU
				85					90					95	
Sar	G111	Ara	Dha	Val.	Ara	Gln	G1 17	Thr	G1 v	Aen	Δen	Glu	Δla	G137	Δla
DCI	Olu	9	100	· ul	9	0111	O ₁	105	O ₁ y	11011	1101	Olu	110	OI,	III
			100					100							
Ala	Ser	Gly	Pro	Ala	Asp	Ser	Gly	Asp	Ala	Leu	Leu	Glu	Arq	Asn	Tyr
		115			-		120	-				125			•
Pro	Thr	Gly	Ala	Glu	Phe	Leu	Gly	Asp	Gly	Gly	Asp	Ala	Ser	Phe	Ser
	130					135					140				
	Arg	Gly	Thr	Gln		Trp	Ala	Val	Glu	_	Leu	Leu	Gln	Ala	
145					150					155					160
7. 20.00	C1 m	т	<i>α</i> 1	a1	7. 20.01	Gly	Tr	7707	Dha	7707	~1	TT= ===	TT-i or	~1	TIlo ro
Arg	GIN	ьец	GIU	165	Arg	GIY	Tyr	vaı	170	vaı	GIY	Tyr	HIS	175	rnr
				102					1/0					1/5	
Phe	Len	G] 11	Δla	Δla	Gln	Ser	Tle	Val	Phe	Glv	Glv	Val	Ara	Δla	Δla
1110	пси	Olu	180	mu	0111	DCI	110	185	1110	Cly	Gry	vai	190	riid	nia
Ser	Gln	Asp	Leu	Lys	Ala	Ile	Trp	Arq	Gly	Phe	Tyr	Ile	Ala	Gly	Asp
		195		•			200		-		-	205		•	-
Pro	Ala	Leu	Ala	Tyr	Gly	Tyr	Ala	Gln	Asp	Gln	Glu	Pro	Asp	Ala	Arg
	210					215					220				
_	Arg	Ile	Arg	Asn	_	Ala	Leu	Leu	Arg		Tyr	Val	Pro	Arg	
225					230					235					240
m1	T	D	a 1	D1	m	7	m1	a 1	Ŧ	m1	.	27.	77.	D	G1
Thr	ьeu	Pro	GIY		Tyr	Arg	Thr	GIY		Inr	ьeu	Ala	АТА		GIU
				245					250					255	
		~ 3	~7		~ 7	_	_		~7		_		_	-	
Ala	Ala	GIY		vaı	GIU	Arg	ьeu		GIY	Hls	Pro	Leu		Leu	Arg
			260					265					270		
т	7	7.7 -	T7 -	ml	G7	Da: -	~1	~1··	az	G1	G1	7	T ~	a1	ml
ьeu	Aap		тте	ınr	сту	Pro		GIU	GIU	стХ	σтλ	_	ьeu	GIU	ınr
		275					280					285			
т1 ~	T 0	C1	Тэээ	Dro	T.C.	7.7.	C1	7~~	The	77~7	77~7	т1 -	Dro	C~~	7.7.~
тте		σтλ	rrp	Pro	ьeu	Ala	GIU	Arg	ınr	val		тте	Pro	ser	Ата
	290					295					300				
T1_	Pro	Thr	Don	Pro	Δra	Δen	Va1	G1 17	G1 17	Den	Leu	Δen	Pro	Ser	Ser
305	LIO	1111	usb	FIO	310	Asn	val	эту	этү	315	пеп	ush	LIO	per.	320
305					O I U					212					2 ∠0

-continued

Ile Pro Asp Lys Glu Glu Ala Ile Ser Ala Leu Pro Asp Tyr Ala Ser

325 330 Gln Pro Gly Lys Pro Pro Arg Glu Asp Leu Lys <210> SEQ ID NO 180 <211> LENGTH: 347 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PE38 NULL MUTANT (E287D) <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (287)..(287) <223> OTHER INFORMATION: Amino acid change Glu-287 to Asp-287 <400> SEQUENCE: 180 Pro Glu Gly Gly Ser Leu Ala Ala Leu Thr Ala His Gln Ala Cys His Leu Pro Leu Glu Thr Phe Thr Arg His Arg Gln Pro Arg Gly Trp Glu Gln Leu Glu Gln Cys Gly Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr Leu Ala Ala Arg Leu Ser Trp Asn Gln Val Asp Gln Val Ile Arg Asn Ala Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg 65 70 75 80 Glu Gln Pro Glu Gln Ala Arg Leu Ala Leu Thr Leu Ala Ala Glu Ser Glu Arg Phe Val Arg Gln Gly Thr Gly Asn Asp Glu Ala Gly Ala 105 Ala Ser Gly Pro Ala Asp Ser Gly Asp Ala Leu Leu Glu Arg Asn Tyr 120 Pro Thr Gly Ala Glu Phe Leu Gly Asp Gly Gly Asp Ile Ser Phe Ser Thr Arg Gly Thr Gln Asn Trp Thr Val Glu Arg Leu Leu Gln Ala His 155 Arg Gln Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr His Gly Thr Phe Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg Ser Gln Asp Leu Asp Ala Ile Trp Arg Gly Phe Tyr Ile Ala Gly Asp Pro Ala Leu Ala Tyr Gly Tyr Ala Gln Asp Gln Glu Pro Asp Ala Arg Gly Arg Ile Arg Asn Gly Ala Leu Leu Arg Val Tyr Val Pro Arg Ser Ser Leu Pro Gly Phe Tyr Arg Thr Gly Leu Thr Leu Ala Ala Pro Glu Ala Ala Gly Glu Val Glu Arg Leu Ile Gly His Pro Leu Pro Leu Arg 265 Leu Asp Ala Ile Thr Gly Pro Glu Glu Glu Gly Gly Arg Leu Asp Thr Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr Val Val Ile Pro Ser Ala 295 300 Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp Leu Asp Pro Ser Ser 310 315

Ile Pro Asp Lys Glu Gln Ala Ile Ser Ala Leu Pro Asp Tyr Ala Ser 330 Gln Pro Gly Lys Pro Pro Arg Glu Asp Leu Lys <210> SEQ ID NO 181 <211> LENGTH: 347 <212> TYPE: PRT <213 > ORGANISM: Artificial Sequence <223> OTHER INFORMATION: PE VARIANT 238 (pIEX02-228 with E287D) <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (141) .. (141) <223> OTHER INFORMATION: Amino acid change Ile-141 to Ala-141 <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (152) .. (152) <223> OTHER INFORMATION: Amino acid change Thr-152 to Arg-152 <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (197) .. (197) <223> OTHER INFORMATION: Amino acid change Asp-197 to Lys-197 <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (241) .. (241) <223> OTHER INFORMATION: Amino acid change Ser-241 to Thr-241 <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (287)..(287) <223> OTHER INFORMATION: Amino acid change Glu-287 to Asp-287 <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (326)..(326) <223> OTHER INFORMATION: Amino acid change Gln-326 to Glu-326 <400> SEOUENCE: 181 Pro Glu Gly Gly Ser Leu Ala Ala Leu Thr Ala His Gln Ala Cys His 10 Leu Pro Leu Glu Thr Phe Thr Arg His Arg Gln Pro Arg Gly Trp Glu Gln Leu Glu Gln Cys Gly Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr Leu Ala Ala Arg Leu Ser Trp Asn Gln Val Asp Gln Val Ile Arg Asn Ala Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg Glu Gln Pro Glu Gln Ala Arg Leu Ala Leu Thr Leu Ala Ala Glu Ser Glu Arg Phe Val Arg Gln Gly Thr Gly Asn Asp Glu Ala Gly Ala Ala Ser Gly Pro Ala Asp Ser Gly Asp Ala Leu Leu Glu Arg Asn Tyr Pro Thr Gly Ala Glu Phe Leu Gly Asp Gly Gly Asp Ala Ser Phe Ser 135 Thr Arg Gly Thr Gln Asn Trp Arg Val Glu Arg Leu Leu Gln Ala His 150 Arg Gln Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr His Gly Thr Phe Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Arg 185 Ser Gln Asp Leu Lys Ala Ile Trp Arg Gly Phe Tyr Ile Ala Gly Asp 200

```
Pro Ala Leu Ala Tyr Gly Tyr Ala Gln Asp Gln Glu Pro Asp Ala Arg
Gly Arg Ile Arg Asn Gly Ala Leu Leu Arg Val Tyr Val Pro Arg Ser
Thr Leu Pro Gly Phe Tyr Arg Thr Gly Leu Thr Leu Ala Ala Pro Glu
Ala Ala Gly Glu Val Glu Arg Leu Ile Gly His Pro Leu Pro Leu Arg
Leu Asp Ala Ile Thr Gly Pro Glu Glu Glu Gly Gly Arg Leu Asp Thr
Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr Val Val Ile Pro Ser Ala
Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp Leu Asp Pro Ser Ser
Ile Pro Asp Lys Glu Glu Ala Ile Ser Ala Leu Pro Asp Tyr Ala Ser
Gln Pro Gly Lys Pro Pro Arg Glu Asp Leu Lys
           340
<210> SEQ ID NO 182
<211> LENGTH: 347
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PE VARIANT 245 (pIEX02-244 with E287D)
<220> FEATURE:
<221> NAME/KEY: MISC FEATURE
<222> LOCATION: (141) .. (141)
<223> OTHER INFORMATION: Amino acid change Ile-141 to Thr-141 \,
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (152) .. (152)
<223> OTHER INFORMATION: Amino acid change Thr-152 to Ala-152
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (192)..(192)
<223> OTHER INFORMATION: Amino acid change Arg-192 to Ala-192
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (197) .. (197)
<223> OTHER INFORMATION: Amino acid change Asp-197 to Lys-197
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (241) .. (241)
<223> OTHER INFORMATION: Amino acid change Ser-241 to Thr-241
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (287)..(287)
<223> OTHER INFORMATION: Amino acid change Glu-287 to Asp-287
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (326)..(326)
<223> OTHER INFORMATION: Amino acid change Gln-326 to Glu-326
<400> SEQUENCE: 182
Pro Glu Gly Gly Ser Leu Ala Ala Leu Thr Ala His Gln Ala Cys His
Leu Pro Leu Glu Thr Phe Thr Arg His Arg Gln Pro Arg Gly Trp Glu
                                2.5
Gln Leu Glu Gln Cys Gly Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr
Leu Ala Ala Arg Leu Ser Trp Asn Gln Val Asp Gln Val Ile Arg Asn
Ala Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg
```

65	70			75		80
Glu Gln Pro	Glu Gln Ala 85	Arg Leu	Ala Leu 90	Thr Leu	Ala Ala	Ala Glu 95
Ser Glu Arg	Phe Val Arg 100	Gln Gly	Thr Gly 105	Asn Asp	Glu Ala 110	Gly Ala
Ala Ser Gly 115	Pro Ala Asp	Ser Gly 120	Asp Ala	Leu Leu	Glu Arg 125	Asn Tyr
Pro Thr Gly 130	Ala Glu Phe	Leu Gly 135	Asp Gly	Gly Asp 140	Thr Ser	Phe Ser
Thr Arg Gly 145	Thr Gln Asn 150	Trp Ala	Val Glu	Arg Leu 155	Leu Gln	Ala His 160
Arg Gln Leu	Glu Glu Arg 165	Gly Tyr	Val Phe 170	Val Gly	Tyr His	Gly Thr 175
Phe Leu Glu	Ala Ala Gln 180	Ser Ile	Val Phe 185	Gly Gly	Val Arg 190	Ala Ala
Ser Gln Asp 195	Leu Lys Ala	Ile Trp 200	Arg Gly	Phe Tyr	Ile Ala 205	Gly Asp
Pro Ala Leu 210	Ala Tyr Gly	Tyr Ala 215	Gln Asp	Gln Glu 220	Pro Asp	Ala Arg
Gly Arg Ile 225	Arg Asn Gly 230	Ala Leu	Leu Arg	Val Tyr 235	Val Pro	Arg Ser 240
Thr Leu Pro	Gly Phe Tyr 245	Arg Thr	Gly Leu 250	Thr Leu	Ala Ala	Pro Glu 255
Ala Ala Gly	Glu Val Glu 260	Arg Leu	Ile Gly 265	His Pro	Leu Pro 270	Leu Arg
Leu Asp Ala 275	Ile Thr Gly	Pro Glu 280	Glu Glu	Gly Gly	Arg Leu 285	Asp Thr
Ile Leu Gly 290	Trp Pro Leu	Ala Glu 295	Arg Thr	Val Val 300	Ile Pro	Ser Ala
Ile Pro Thr 305	Asp Pro Arg 310	Asn Val	Gly Gly	Asp Leu 315	Asp Pro	Ser Ser 320
Ile Pro Asp	Lys Glu Glu 325	Ala Ile	Ser Ala 330	Leu Pro	Asp Tyr	Ala Ser 335
Gln Pro Gly	Lys Pro Pro 340	Arg Glu	Asp Leu 345	Lys		
<220> FEATUR <223> OTHER	H: 347 PRT ISM: Artific RE: INFORMATION	_		(pIEX02-2	246 with	E287D)
<220> FEATU		ALTER E				
	KEY: MISC_FE <i>I</i> ION: (141)					
<223> OTHER <220> FEATU	INFORMATION	: Amino a	cid char	nge Ile-1	141 to A	la-141
	KE: KEY: MISC_FE	ATURE				
	ION: (152)		المامة المامية	aga mb f	IEO +	15.150
<223> OTHER <220> FEATU	INFORMATION RE:	: Amino a	icid chai	ige Inr-1	15∠ to A	Ld-152
<221> NAME/	KEY: MISC_FE					
	ION: (192) INFORMATION		icid char	nge Arg-1	192 to 7	la-192
<223> OTHER <220> FEATU		. диши а	CIG CHAI	ide wid-1	. 92 (O A.	Lu-192
	KEY: MISC_FE					
	ION: (197) INFORMATION		cid char	nge Asp-1	L97 to Is	/s-197
<220> FEATU		a			CO II	, ,
	KEY: MISC_FEA					

<223	3 > 0	THER	INF	ORMA!	rion	: Am:	ino a	acid	char	nge :	Ser-2	241 1	to Th	nr-24	1
		EATUI													
					C_FEA										
					7)				abos		~1., 4	207 4	- 0 7/		7
		ZATUI		JRMA.	rion	: A.III.	LIIO a	acia	Citai	ige (31u-,	40/	LO A:	3p-20	> /
				MISC	C_FEA	TURE	2								
					5)										
<223	3 > 0'	THER	INF	ORMA'	rion	: Am:	ino a	acid	chai	nge (Gln-S	326 1	to G	lu-32	26
< 400)> SI	EQUE	ICE :	183											
Dro	C1.1	C1.	C1.,	Cor	T 011	712	777.	Lou	Thr	71.	uia	Cln	777	Crra	Uic
1	GIU	СТУ	СТУ	5	Leu	Ата	на	пеп	10	Ата	птъ	GIII	Ата	15	птъ
_															
Leu	Pro	Leu	Glu	Thr	Phe	Thr	Arg	His	Arg	Gln	Pro	Arg	Gly	Trp	Glu
			20					25					30		
	_					_	_			_	_			_	_
GIn	Leu		GIn	Cys	Gly	Tyr		Val	GIn	Arg	Leu		Ala	Leu	Tyr
		35					40					45			
Leu	Ala	Ala	Ara	Leu	Ser	Trp	Asn	Gln	Val	Asp	Gln	Val	Ile	Ara	Asn
	50		5			55					60			5	
	Leu	Ala	Ser	Pro	Gly	Ser	Gly	Gly	Asp		Gly	Glu	Ala	Ile	
65					70					75					80
a1	~1 m	David	a1	<i>α</i> 1	77.	7	т	77.	T	mla se	т	7.7.	7.7.	7.7.	a1
GIU	GIN	Pro	GIU	85	Ala	Arg	ьeu	Ата	ьеu 90	Inr	ьeu	АТА	АТА	95	GIU
				05					90					93	
Ser	Glu	Arq	Phe	Val	Arg	Gln	Gly	Thr	Gly	Asn	Asp	Glu	Ala	Gly	Ala
			100				-	105	-		-		110	•	
Ala	Ser	_	Pro	Ala	Asp	Ser		Asp	Ala	Leu	Leu		Arg	Asn	Tyr
		115					120					125			
Dro	Thr	G1 17	712	G111	Phe	Lou	G] v	7 an	Cl w	G1 _v	Λan	Λla	Cor	Dho	Cor
FIO	130	GIY	Ата	Giu	FILE	135	GIY	Asp	GIY	GIY	140	Ата	SeT	FILE	Set
Thr	Arg	Gly	Thr	Gln	Asn	Trp	Ala	Val	Glu	Arg	Leu	Leu	Gln	Ala	His
145					150					155					160
			_	_										_	
Arg	Gln	Leu	Glu		Arg	Gly	Tyr	Val		Val	Gly	Tyr	His	_	Thr
				165					170					175	
Phe	Leu	Glu	Ala	Ala	Gln	Ser	Ile	Val	Phe	Glv	Glv	Val	Ara	Ala	Ala
			180					185		2	2		190		
Ser	Gln		Leu	Lys	Ala	Ile		Arg	Gly	Phe	Tyr		Ala	Gly	Asp
		195					200					205			
Dro	77.	T 011	71.	Tree	Gly	Tree	712	Cln	7 cm	Cln	C111	Dro	7 cm	71.	Λ×α
PIO	210	пец	Ата	тут	СТУ	215	на	GIII	дър	GIII	220	PIO	Asp	Ата	Arg
Gly	Arg	Ile	Arg	Asn	Gly	Ala	Leu	Leu	Arg	Val	Tyr	Val	Pro	Arg	Ser
225					230					235					240
Thr	Leu	Pro	Gly		Tyr	Arg	Thr	Gly		Thr	Leu	Ala	Ala		Glu
				245					250					255	
Ala	Ala	Glv	Glu	Val	Glu	Ara	Leu	Tle	Glv	His	Pro	Leu	Pro	Leu	Ara
		1	260			5		265					270		5
Leu	Asp	Ala	Ile	Thr	Gly	Pro	Glu	Glu	Glu	Gly	Gly	Arg	Leu	Asp	Thr
		275					280					285			
Ile		Gly	Trp	Pro	Leu		Glu	Arg	Thr	Val		Ile	Pro	Ser	Ala
	290					295					300				
T7.	D	m1	7	D	7	7	77-7	G1	a 1	7	T	7	D	C	C
	Pro	Thr	Asp	Pro	Arg	Asn	vaı	GIĀ	GIĀ		ьeu	Asp	Pro	ser	
305					310					315					320
Ile	Pro	Agn	Lva	Glu	Glu	Ala	Ile	Ser	Ala	Len	Pro	Agn	Tvr	Ala	Ser
	110	110P	-10	325	Jiu			501	330	Leu	110	1125	-1-	335	~
Gln	Pro	Gly	Lys	Pro	Pro	Arg	Glu	Asp	Leu	Lys					
		-	340			_		345		·					

<210> SEQ II <211> LENGTH <212> TYPE:	H: 611 PRT										
<213> ORGANI <220> FEATUR <223> OTHER	RE:		-		1 -WT	PE3	B-HIS	58 - EI	DLK		
<400> SEQUE	NCE: 184										
Glu Val Gln 1	Leu Val 5	Glu S	er Gly	Gly	Gly 10	Leu	Val	Lys	Pro	Gly 15	Gly
Ser Leu Lys	Leu Ser 20	Cys A	la Ala	Ser 25	Gly	Phe	Ala	Phe	Ser 30	Ile	Tyr
Asp Met Ser 35	Trp Val	Arg G	ln Thr 40	Pro	Glu	Lys	Arg	Leu 45	Glu	Trp	Val
Ala Tyr Ile 50	Ser Ser	Gly G		Thr	Thr	Tyr	Tyr 60	Pro	Asp	Thr	Val
Lys Gly Arg 65	Phe Thr	Ile Se	er Arg	Asp	Asn	Ala 75	Lys	Asn	Thr	Leu	Tyr 80
Leu Gln Met	Ser Ser 85	Leu Ly	ys Ser	Glu	Asp	Thr	Ala	Met	Tyr	Tyr 95	CÀa
Ala Arg His	Ser Gly 100	Tyr G	ly Ser	Ser 105	Tyr	Gly	Val	Leu	Phe 110	Ala	Tyr
Trp Gly Gln 115	Gly Thr	Leu V	al Thr 120	Val	Ser	Ser	Gly	Gly 125	Gly	Gly	Ser
Gly Gly Gly 130	Gly Ser	-	ly Gly 35	Gly	Ser	Asp	Ile 140	Gln	Met	Thr	Gln
Thr Thr Ser 145	Ser Leu	Ser A	la Ser	Leu	Gly	Asp 155	Arg	Val	Thr	Ile	Ser 160
Cys Arg Ala	Ser Gln 165	Asp I	le Ser	Asn	Tyr 170	Leu	Asn	Trp	Tyr	Gln 175	Gln
Lys Pro Asp	Gly Thr 180	Val Ly	ys Leu	Leu 185	Ile	Tyr	Tyr	Thr	Ser 190	Ile	Leu
His Ser Gly 195	Val Pro	Ser A	rg Phe 200	Ser	Gly	Ser	Gly	Ser 205	Gly	Thr	Asp
Tyr Ser Leu 210	Thr Ile		sn Leu 15	Glu	Gln	Glu	Asp 220	Phe	Ala	Thr	Tyr
Phe Cys Gln 225	Gln Gly	Asn Tl 230	nr Leu	Pro	Trp	Thr 235	Phe	Gly	Gly	Gly	Thr 240
Lys Leu Glu	Ile Lys 245	Ser Se	er Gly	Leu	Val 250	Pro	Arg	Gly	Ser	His 255	Met
Pro Glu Gly	Gly Ser 260	Leu A	la Ala	Leu 265	Thr	Ala	His	Gln	Ala 270	Сув	His
Leu Pro Leu 275	Glu Thr	Phe Tl	nr Arg 280	His	Arg	Gln	Pro	Arg 285	Gly	Trp	Glu
Gln Leu Glu 290	Gln Cys		yr Pro 95	Val	Gln	Arg	Leu 300	Val	Ala	Leu	Tyr
Leu Ala Ala 305	Arg Leu	Ser T: 310	rp Asn	Gln	Val	Asp 315	Gln	Val	Ile	Arg	Asn 320
Ala Leu Ala	Ser Pro 325	Gly S	er Gly	Gly	Asp 330	Leu	Gly	Glu	Ala	Ile 335	Arg
Glu Gln Pro	Glu Gln 340	Ala A	rg Leu	Ala 345	Leu	Thr	Leu	Ala	Ala 350	Ala	Glu
Ser Glu Arg 355	Phe Val	Arg G	ln Gly 360	Thr	Gly	Asn	Asp	Glu 365	Ala	Gly	Ala
Ala Ser Gly	Pro Ala	Asp Se	er Gly	Asp	Ala	Leu	Leu	Glu	Arg	Asn	Tyr

Pro	Thr	Glv	Ala	Glu	Phe	Leu	Glv	Asp	Glv	Glv	Asp	Ile	Ser	Phe	Ser
385		011		014	390	204	017		017	395	1P				400
Thr	Arg	Gly	Thr	Gln 405	Asn	Trp	Thr	Val	Glu 410	Arg	Leu	Leu	Gln	Ala 415	His
Arg	Gln	Leu	Glu 420	Glu	Arg	Gly	Tyr	Val 425	Phe	Val	Gly	Tyr	His 430	Gly	Thr
Phe	Leu	Glu 435	Ala	Ala	Gln	Ser	Ile 440	Val	Phe	Gly	Gly	Val 445	Arg	Ala	Arg
Ser	Gln 450	Asp	Leu	Asp	Ala	Ile 455	Trp	Arg	Gly	Phe	Tyr 460	Ile	Ala	Gly	Asp
Pro 465	Ala	Leu	Ala	Tyr	Gly 470	Tyr	Ala	Gln	Asp	Gln 475	Glu	Pro	Asp	Ala	Arg 480
Gly	Arg	Ile	Arg	Asn 485	Gly	Ala	Leu	Leu	Arg 490	Val	Tyr	Val	Pro	Arg 495	Ser
Ser	Leu	Pro	Gly 500	Phe	Tyr	Arg	Thr	Gly 505	Leu	Thr	Leu	Ala	Ala 510	Pro	Glu
Ala	Ala	Gly 515	Glu	Val	Glu	Arg	Leu 520	Ile	Gly	His	Pro	Leu 525	Pro	Leu	Arg
Leu	Asp 530	Ala	Ile	Thr	Gly	Pro 535	Glu	Glu	Glu	Gly	Gly 540	Arg	Leu	Glu	Thr
Ile 545	Leu	Gly	Trp	Pro	Leu 550	Ala	Glu	Arg	Thr	Val 555	Val	Ile	Pro	Ser	Ala 560
Ile	Pro	Thr	Asp	Pro 565	Arg	Asn	Val	Gly	Gly 570	Asp	Leu	Asp	Pro	Ser 575	Ser
Ile	Pro	Asp	Lys 580	Glu	Gln	Ala	Ile	Ser 585	Ala	Leu	Pro	Asp	Tyr 590	Ala	Ser
Gln	Pro	Gly 595	Lys	Pro	Pro	Arg	His 600	His	His	His	His	His 605	His	His	Glu
Asp	Leu 610	Lys													
<210)> SI	EQ II	ои с	185											
		ENGTI		L4											
<213	3 > OF		ISM:	Art	ific:	1-1									
						Lai s	Seque	ence							
< 400				ORMA:	rion		_		-HIS	56-W1	r PE3	38 - EI	OLK		
)> SI	EQUE	INF		rion		_		l-HIS	56-W1	r PE3	38-EI	DLK		
Glu 1		EQUE	INFO	185		: FUS	SION	RFB4						Gly 15	Gly
1	Val	EQUEN Gln	INFO	185 Val 5	Glu	: FUS	Gly	RFB4	Gly 10	Leu	Val	Lys		15	
1 Ser	Val Leu	Gln Lys	INF(NCE: Leu Leu 20	185 Val 5 Ser	Glu Cys	: FUS Ser Ala	Gly Ala	Gly Ser 25	Gly 10	Leu Phe	Val Ala	Lys Phe	Pro Ser	15 Ile	Tyr
1 Ser Asp	Val Leu Met	Gln Lys Ser 35	INFO NCE: Leu Leu 20 Trp	185 Val 5 Ser Val	Glu Cys Arg	Ser Ala Gln	Gly Ala Thr	Gly Ser 25	Gly 10 Gly Glu	Leu Phe Lys	Val Ala Arg	Lys Phe Leu 45	Pro Ser 30	15 Ile Trp	Tyr Val
Ser Asp	Val Leu Met Tyr 50	Gln Lys Ser 35	INFO NCE: Leu Leu 20 Trp	185 Val 5 Ser Val	Glu Cys Arg Gly	Ser Ala Gln Gly 55	Gly Ala Thr 40	Gly Ser 25 Pro	Gly 10 Gly Glu Thr	Leu Phe Lys Tyr	Val Ala Arg Tyr 60	Lys Phe Leu 45 Pro	Pro Ser 30 Glu	15 Ile Trp Thr	Tyr Val Val
Ser Asp Ala Lys 65	Val Leu Met Tyr 50	Gln Lys Ser 35 Ile	INFO NCE: Leu Leu 20 Trp Ser	185 Val 5 Ser Val Ser	Glu Cys Arg Gly Ile 70	Ser Ala Gln Gly 55	Gly Ala Thr 40 Gly Arg	Gly Ser 25 Pro Thr	Gly 10 Gly Glu Thr	Leu Phe Lys Tyr Ala	Val Ala Arg Tyr 60 Lys	Lys Phe Leu 45 Pro Asn	Pro Ser 30 Glu Asp	15 Ile Trp Thr	Tyr Val Val Tyr 80
Ser Asp Ala Lys 65 Leu	Val Leu Met Tyr 50 Gly	GQUEN Gln Lys Ser 35 Ile Arg	INFO NCE: Leu Leu 20 Trp Ser Phe	Val 5 Ser Val Ser Thr	Glu Cys Arg Gly Ile 70 Leu	Ser Ala Gln Gly 55 Ser Lys	Gly Ala Thr 40 Gly Arg	Gly Ser 25 Pro Thr Asp	Gly 10 Gly Glu Thr Asn Asp	Leu Phe Lys Tyr Ala 75 Thr	Val Ala Arg Tyr 60 Lys	Lys Phe Leu 45 Pro Asn	Pro Ser 30 Glu Asp	15 Ile Trp Thr Leu Tyr 95	Tyr Val Val Tyr 80 Cys
1 Ser Asp Ala Lys 65 Leu Ala	Val Leu Met Tyr 50 Gly Gln Arg	Gln Lys Ser 35 Ile Arg Met	INFO NCE: Leu 20 Trp Ser Phe Ser Ser	185 Val 5 Ser Val Ser Thr Ser 85	Glu Cys Arg Gly Ile 70 Leu	Ser Ala Gln Gly 55 Ser Lys Gly	Gly Ala Thr 40 Gly Arg Ser	Gly Ser 25 Pro Thr Asp Glu Ser 105	Gly 10 Gly Glu Thr Asn Asp 90 Tyr	Leu Phe Lys Tyr Ala 75 Thr	Val Ala Arg Tyr 60 Lys Ala Val	Lys Phe Leu 45 Pro Asn Met Leu	Pro Ser 30 Glu Asp Thr Tyr	15 Ile Trp Thr Leu Tyr 95 Ala	Tyr Val Val Tyr 80 Cys

_		115					120					125			
Gly	Gly 130		Gly	Ser	Gly	Gly 135		Gly	Ser	Asp	Ile 140		Met	Thr	Gln
Thr 145	Thr	Ser	Ser	Leu	Ser 150	Ala	Ser	Leu	Gly	Asp 155	Arg	Val	Thr	Ile	Ser 160
Cya	Arg	Ala	Ser	Gln 165	Asp	Ile	Ser	Asn	Tyr 170	Leu	Asn	Trp	Tyr	Gln 175	Gln
Lys	Pro	Asp	Gly 180	Thr	Val	Lys	Leu	Leu 185	Ile	Tyr	Tyr	Thr	Ser 190	Ile	Leu
His	Ser	Gly 195	Val	Pro	Ser	Arg	Phe 200	Ser	Gly	Ser	Gly	Ser 205	Gly	Thr	Asp
Tyr	Ser 210	Leu	Thr	Ile	Ser	Asn 215	Leu	Glu	Gln	Glu	Asp 220	Phe	Ala	Thr	Tyr
Phe 225	Cha	Gln	Gln	Gly	Asn 230	Thr	Leu	Pro	Trp	Thr 235	Phe	Gly	Gly	Gly	Thr 240
Lys	Leu	Glu	Ile	Lys 245	Ala	His	Gly	Gly	Ser 250	His	His	His	His	His 255	His
Ser	Ser	Gly	Leu 260	Val	Pro	Arg	Gly	Ser 265	His	Met	Pro	Glu	Gly 270	Gly	Ser
Leu	Ala	Ala 275	Leu	Thr	Ala	His	Gln 280	Ala	Сув	His	Leu	Pro 285	Leu	Glu	Thr
Phe	Thr 290	Arg	His	Arg	Gln	Pro 295	Arg	Gly	Trp	Glu	Gln 300	Leu	Glu	Gln	CÀa
Gly 305	Tyr	Pro	Val	Gln	Arg 310	Leu	Val	Ala	Leu	Tyr 315	Leu	Ala	Ala	Arg	Leu 320
Ser	Trp	Asn	Gln	Val 325	Asp	Gln	Val	Ile	Arg 330	Asn	Ala	Leu	Ala	Ser 335	Pro
Gly	Ser	Gly	Gly 340	Asp	Leu	Gly	Glu	Ala 345	Ile	Arg	Glu	Gln	Pro 350	Glu	Gln
Ala	Arg	Leu 355	Ala	Leu	Thr	Leu	Ala 360	Ala	Ala	Glu	Ser	Glu 365	Arg	Phe	Val
Arg	Gln 370	Gly	Thr	Gly	Asn	Asp 375	Glu	Ala	Gly	Ala	Ala 380	Ser	Gly	Pro	Ala
Asp 385	Ser	Gly	Asp	Ala	Leu 390	Leu	Glu	Arg	Asn	Tyr 395	Pro	Thr	Gly	Ala	Glu 400
Phe	Leu	Gly	Asp	Gly 405	Gly	Asp	Ile	Ser	Phe 410	Ser	Thr	Arg	Gly	Thr 415	Gln
Asn	Trp	Thr	Val 420	Glu	Arg	Leu	Leu	Gln 425	Ala	His	Arg	Gln	Leu 430	Glu	Glu
Arg	Gly	Tyr 435	Val	Phe	Val	Gly	Tyr 440	His	Gly	Thr	Phe	Leu 445	Glu	Ala	Ala
Gln	Ser 450	Ile	Val	Phe	Gly	Gly 455	Val	Arg	Ala	Arg	Ser 460	Gln	Asp	Leu	Asp
Ala 465	Ile	Trp	Arg	Gly	Phe 470	Tyr	Ile	Ala	Gly	Asp 475	Pro	Ala	Leu	Ala	Tyr 480
Gly	Tyr	Ala	Gln	Asp 485	Gln	Glu	Pro	Asp	Ala 490	Arg	Gly	Arg	Ile	Arg 495	Asn
Gly	Ala	Leu	Leu 500	Arg	Val	Tyr	Val	Pro 505	Arg	Ser	Ser	Leu	Pro 510	Gly	Phe
Tyr	Arg	Thr 515	Gly	Leu	Thr	Leu	Ala 520	Ala	Pro	Glu	Ala	Ala 525	Gly	Glu	Val
Glu	Arg 530	Leu	Ile	Gly	His	Pro 535	Leu	Pro	Leu	Arg	Leu 540	Asp	Ala	Ile	Thr

Gly Pro Glu Glu Glu Gly Gly Arg Leu Glu Thr Ile Leu Gly Trp Pro 555 Leu Ala Glu Arg Thr Val Val Ile Pro Ser Ala Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp Leu Asp Pro Ser Ser Ile Pro Asp Lys Glu Gln Ala Ile Ser Ala Leu Pro Asp Tyr Ala Ser Gln Pro Gly Lys Pro Pro Arg Glu Asp Leu Lys <210> SEQ ID NO 186 <211> LENGTH: 611 <212> TYPE: PRT <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: FUSION RFB4-VARIANT 244-HIS8-EDLK <400> SEQUENCE: 186 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly 1 $$ 10 $$ 15 10 Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Ala Phe Ser Ile Tyr 25 Asp Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Trp Val Ala Tyr Ile Ser Ser Gly Gly Gly Thr Thr Tyr Tyr Pro Asp Thr Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr 65 70 75 80Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Met Tyr Tyr Cys Ala Arg His Ser Gly Tyr Gly Ser Ser Tyr Gly Val Leu Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Ser 120 Gly Gly Gly Gly Ser Gly Gly Gly Ser Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Ser Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr Val Lys Leu Leu Ile Tyr Tyr Thr Ser Ile Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 200 Tyr Ser Leu Thr Ile Ser Asn Leu Glu Gln Glu Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp Thr Phe Gly Gly Gly Thr 230 Lys Leu Glu Ile Lys Ser Ser Gly Leu Val Pro Arg Gly Ser His Met 250 Pro Glu Gly Gly Ser Leu Ala Ala Leu Thr Ala His Gln Ala Cys His 265 Leu Pro Leu Glu Thr Phe Thr Arg His Arg Gln Pro Arg Gly Trp Glu 280

Gln Leu Glu Gln Cys Gly Tyr Pro Val Gln Arg Leu Val Ala Leu Tyr Leu Ala Ala Arg Leu Ser Trp Asn Gln Val Asp Gln Val Ile Arg Asn Ala Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu Gly Glu Ala Ile Arg Glu Gln Pro Glu Gln Ala Arg Leu Ala Leu Thr Leu Ala Ala Ala Glu 345 Ser Glu Arg Phe Val Arg Gln Gly Thr Gly Asn Asp Glu Ala Gly Ala Ala Ser Gly Pro Ala Asp Ser Gly Asp Ala Leu Leu Glu Arg Asn Tyr Pro Thr Gly Ala Glu Phe Leu Gly Asp Gly Gly Asp Thr Ser Phe Ser Thr Arg Gly Thr Gln Asn Trp Ala Val Glu Arg Leu Leu Gln Ala His 410 Arg Gln Leu Glu Glu Arg Gly Tyr Val Phe Val Gly Tyr His Gly Thr 425 420 Phe Leu Glu Ala Ala Gln Ser Ile Val Phe Gly Gly Val Arg Ala Ala 440 Ser Gln Asp Leu Lys Ala Ile Trp Arg Gly Phe Tyr Ile Ala Gly Asp Pro Ala Leu Ala Tyr Gly Tyr Ala Gln Asp Gln Glu Pro Asp Ala Arg Gly Arg Ile Arg Asn Gly Ala Leu Leu Arg Val Tyr Val Pro Arg Ser Thr Leu Pro Gly Phe Tyr Arg Thr Gly Leu Thr Leu Ala Ala Pro Glu Ala Ala Gly Glu Val Glu Arg Leu Ile Gly His Pro Leu Pro Leu Arg 520 Leu Asp Ala Ile Thr Gly Pro Glu Glu Glu Gly Gly Arg Leu Glu Thr 535 Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr Val Val Ile Pro Ser Ala Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp Leu Asp Pro Ser Ser Ile Pro Asp Lys Glu Glu Ala Ile Ser Ala Leu Pro Asp Tyr Ala Ser Gln Pro Gly Lys Pro Pro Arg His His His His His His His Glu Asp Leu Lys 610 <210> SEQ ID NO 187 <211> LENGTH: 614 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: FUSION RFB4-HIS6-WT PE38-EDLK <400> SEQUENCE: 187 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly

10 Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Ala Phe Ser Ile Tyr

Asp	Met	Ser 35	Trp	Val	Arg	Gln	Thr 40	Pro	Glu	Lys	Arg	Leu 45	Glu	Trp	Val
Ala	Tyr 50	Ile	Ser	Ser	Gly	Gly 55	Gly	Thr	Thr	Tyr	Tyr 60	Pro	Asp	Thr	Val
Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ala 75	Lys	Asn	Thr	Leu	Tyr 80
Leu	Gln	Met	Ser	Ser 85	Leu	Lys	Ser	Glu	Asp	Thr	Ala	Met	Tyr	Tyr 95	CÀa
Ala	Arg	His	Ser 100	Gly	Tyr	Gly	Ser	Ser 105	Tyr	Gly	Val	Leu	Phe 110	Ala	Tyr
Trp	Gly	Gln 115	Gly	Thr	Leu	Val	Thr 120	Val	Ser	Ser	Gly	Gly 125	Gly	Gly	Ser
Gly	Gly 130	Gly	Gly	Ser	Gly	Gly 135	Gly	Gly	Ser	Asp	Ile 140	Gln	Met	Thr	Gln
Thr 145	Thr	Ser	Ser	Leu	Ser 150	Ala	Ser	Leu	Gly	Asp 155	Arg	Val	Thr	Ile	Ser 160
Cys	Arg	Ala	Ser	Gln 165	Asp	Ile	Ser	Asn	Tyr 170	Leu	Asn	Trp	Tyr	Gln 175	Gln
Lys	Pro	Asp	Gly 180	Thr	Val	Lys	Leu	Leu 185	Ile	Tyr	Tyr	Thr	Ser 190	Ile	Leu
His	Ser	Gly 195	Val	Pro	Ser	Arg	Phe 200	Ser	Gly	Ser	Gly	Ser 205	Gly	Thr	Asp
Tyr	Ser 210	Leu	Thr	Ile	Ser	Asn 215	Leu	Glu	Gln	Glu	Asp 220	Phe	Ala	Thr	Tyr
Phe 225	Cys	Gln	Gln	Gly	Asn 230	Thr	Leu	Pro	Trp	Thr 235	Phe	Gly	Gly	Gly	Thr 240
ГÀЗ	Leu	Glu	Ile	Lys 245	Ala	His	Gly	Gly	Ser 250	His	His	His	His	His 255	His
Ser	Ser	Gly	Leu 260	Val	Pro	Arg	Gly	Ser 265	His	Met	Pro	Glu	Gly 270	Gly	Ser
Leu	Ala	Ala 275	Leu	Thr	Ala	His	Gln 280	Ala	Сув	His	Leu	Pro 285	Leu	Glu	Thr
Phe	Thr 290	Arg	His	Arg	Gln	Pro 295	Arg	Gly	Trp	Glu	Gln 300	Leu	Glu	Gln	CÀa
Gly 305	Tyr	Pro	Val	Gln	Arg 310	Leu	Val	Ala	Leu	Tyr 315	Leu	Ala	Ala	Arg	Leu 320
Ser	Trp	Asn		Val 325		Gln	Val		Arg 330		Ala	Leu	Ala	Ser 335	Pro
Gly	Ser	Gly	Gly 340	Asp	Leu	Gly	Glu	Ala 345	Ile	Arg	Glu	Gln	Pro 350	Glu	Gln
Ala	Arg	Leu 355	Ala	Leu	Thr	Leu	Ala 360	Ala	Ala	Glu	Ser	Glu 365	Arg	Phe	Val
Arg	Gln 370	Gly	Thr	Gly	Asn	Asp 375	Glu	Ala	Gly	Ala	Ala 380	Ser	Gly	Pro	Ala
Asp 385	Ser	Gly	Asp	Ala	Leu 390	Leu	Glu	Arg	Asn	Tyr 395	Pro	Thr	Gly	Ala	Glu 400
Phe	Leu	Gly	Asp	Gly 405	Gly	Asp	Thr	Ser	Phe 410	Ser	Thr	Arg	Gly	Thr 415	Gln
Asn	Trp	Ala	Val 420	Glu	Arg	Leu	Leu	Gln 425	Ala	His	Arg	Gln	Leu 430	Glu	Glu
Arg	Gly	Tyr 435	Val	Phe	Val	Gly	Tyr 440	His	Gly	Thr	Phe	Leu 445	Glu	Ala	Ala

Gln	Ser 450	Ile	Val	Phe	Gly	Gly 455	Val	Arg	Ala	Ala	Ser 460	Gln	Asp	Leu	Lys
Ala 465	Ile	Trp	Arg	Gly	Phe 470	Tyr	Ile	Ala	Gly	Asp 475	Pro	Ala	Leu	Ala	Tyr 480
Gly	Tyr	Ala	Gln	Asp 485	Gln	Glu	Pro	Asp	Ala 490	Arg	Gly	Arg	Ile	Arg 495	Asn
Gly	Ala	Leu	Leu 500	Arg	Val	Tyr	Val	Pro 505	Arg	Ser	Thr	Leu	Pro 510	Gly	Phe
Tyr	Arg	Thr 515	Gly	Leu	Thr	Leu	Ala 520	Ala	Pro	Glu	Ala	Ala 525	Gly	Glu	Val
Glu	Arg 530	Leu	Ile	Gly	His	Pro 535	Leu	Pro	Leu	Arg	Leu 540	Asp	Ala	Ile	Thr
Gly 545	Pro	Glu	Glu	Glu	Gly 550	Gly	Arg	Leu	Glu	Thr 555	Ile	Leu	Gly	Trp	Pro 560
Leu	Ala	Glu	Arg	Thr 565	Val	Val	Ile	Pro	Ser 570	Ala	Ile	Pro	Thr	Asp 575	Pro
Arg	Asn	Val	Gly 580	Gly	Asp	Leu	Asp	Pro 585	Ser	Ser	Ile	Pro	Asp 590	Lys	Glu
Glu	Ala	Ile 595	Ser	Ala	Leu	Pro	Asp	Tyr	Ala	Ser	Gln	Pro 605	Gly	Lys	Pro
Pro	Arg 610	Glu	Asp	Leu	Lys										
)> FI 3> O			ORMA'	rion	: RFI	34 S0	CFV							
<220)> FI	EATUR	RE:												
<223	3 > 07 0 > SI	THER EQUEI	INFO	188											
<223 <400 Glu 1	3> 07 D> SI Val	THER EQUEN Gln	INFO	188 Val 5	Glu	Ser	Gly	Gly	10					15	
<223 <400 Glu 1 Ser	3> 07 > SI Val Leu	THER EQUEN Gln Lys	INFO NCE: Leu Leu 20	188 Val 5 Ser	Glu Cys	Ser Ala	Gly Ala	Gly Ser 25	10 Gly	Phe	Ala	Phe	Ser 30	15 Ile	Tyr
<223 <400 Glu 1 Ser	3> 07 Val Leu Met	THER EQUEN Gln Lys Ser 35	INFO NCE: Leu Leu 20 Trp	188 Val 5 Ser Val	Glu Cys Arg	Ser Ala Gln	Gly Ala Thr 40	Gly Ser 25 Pro	10 Gly Glu	Phe Lys	Ala Arg	Phe Leu 45	Ser 30 Glu	15 Ile Trp	Tyr Val
<223 <400 Glu 1 Ser	3> 07 Val Leu Met	THER EQUEN Gln Lys Ser 35	INFO NCE: Leu Leu 20 Trp	188 Val 5 Ser Val	Glu Cys	Ser Ala Gln	Gly Ala Thr 40	Gly Ser 25 Pro	10 Gly Glu	Phe Lys	Ala Arg	Phe Leu 45	Ser 30 Glu	15 Ile Trp	Tyr Val
<223 <400 Glu 1 Ser Asp	3 > 07 0 > SI Val Leu Met Tyr 50	CHER EQUEN Gln Lys Ser 35	INFO ICE: Leu Leu 20 Trp	188 Val 5 Ser Val	Glu Cys Arg	Ser Ala Gln Gly 55	Gly Ala Thr 40 Gly	Gly Ser 25 Pro	10 Gly Glu Thr	Phe Lys Tyr	Ala Arg Tyr 60	Phe Leu 45 Pro	Ser 30 Glu Asp	15 Ile Trp Thr	Tyr Val Val
<2233<4000 Glu 1 Ser Asp Ala Lys 65	3> OT Val Leu Met Tyr 50	GUEN Gln Lys Ser 35 Ile	INFO Leu Leu 20 Trp Ser	188 Val 5 Ser Val Ser	Glu Cys Arg Gly	Ser Ala Gln Gly 55 Ser	Gly Ala Thr 40 Gly Arg	Gly Ser 25 Pro Thr	Gly Glu Thr	Phe Lys Tyr Ala 75	Ala Arg Tyr 60 Lys	Phe Leu 45 Pro Asn	Ser 30 Glu Asp	15 Ile Trp Thr	Tyr Val Val Tyr 80
<223 <400 Glu 1 Ser Asp Ala Lys 65 Leu	3> OT Val Leu Met Tyr 50 Gly	THER GQUEN Gln Lys Ser 35 Ile Arg	INFO ICE: Leu Leu 20 Trp Ser Phe Ser	188 Val 5 Ser Val Ser Thr	Glu Cys Arg Gly Ile 70	Ser Ala Gln Gly 55 Ser Lys	Gly Ala Thr 40 Gly Arg	Gly Ser 25 Pro Thr Asp	Glu Thr Asn Asp	Phe Lys Tyr Ala 75	Ala Arg Tyr 60 Lys Ala	Phe Leu 45 Pro Asn	Ser 30 Glu Asp Thr	15 Ile Trp Thr Leu Tyr 95	Tyr Val Val Tyr 80 Cys
<223 <400 Glu 1 Ser Asp Ala Lys 65 Leu Ala	3> OT Val Leu Met Tyr 50 Gly Gln Arg	THER CQUEN Gln Lys Ser 35 Ile Arg Met His	INFO INFO INFO INFO INFO INFO INFO INFO	188 Val 5 Ser Val Ser Thr 6 Gly	Glu Cys Arg Gly Ile 70 Leu	Ser Ala Gln Gly 55 Ser Lys	Gly Ala Thr 40 Gly Arg Ser	Gly Ser 25 Pro Thr Asp Glu Ser 105	10 Gly Glu Thr Asn Asp 90 Tyr	Phe Lys Tyr Ala 75 Thr	Ala Arg Tyr 60 Lys Ala Val	Phe Leu 45 Pro Asn Met Leu	Ser 30 Glu Asp Thr Tyr Phe 110	15 Ile Trp Thr Leu Tyr 95 Ala	Tyr Val Val Tyr 80 Cys
<223 <400 Glu 1 Ser Asp Ala Lys 65 Leu Ala Trp	3> OT Val Leu Met Tyr 50 Gly Gln Arg Gly	THER CQUEN Gln Lys Ser 35 Ile Arg Met His Gln 115	INFCE: Leu Leu 20 Trp Ser Phe Ser Ser Gly	188 Val 5 Ser Val Ser Thr Gly Thr	Glu Cys Arg Gly Ile 70 Leu Tyr	Ser Ala Gln Gly 55 Ser Lys Gly Val	Gly Ala Thr 40 Gly Arg Ser Thr 120	Gly Ser 25 Pro Thr Asp Glu Ser 105 Val	10 Gly Glu Thr Asn Asp 90 Tyr	Phe Lys Tyr Ala 75 Thr Gly Ser	Ala Arg Tyr 60 Lys Ala Val	Phe Leu 45 Pro Asn Met Leu Gly 125	Ser 30 Glu Asp Thr Tyr Phe 110	15 Ile Trp Thr Leu Tyr 95 Ala Gly	Tyr Val Val Tyr 80 Cys Tyr
<223 <400 Glu 1 Ser Asp Ala Lys 65 Leu Ala Trp Gly	33> OT Val Leu Met Tyr 50 Gly Gln Arg Gly	CHER CQUEN Gln Lys Ser 35 Ile Arg Met His Gln 115	INFC Leu Leu 20 Trp Ser Phe Ser Gly Gly	188 Val 5 Ser Val Ser Thr Ser 85 Gly Thr	Glu Cys Arg Gly Ile 70 Leu Tyr	Ser Ala Gln Gly 55 Ser Lys Gly Val Gly 135	Gly Ala Thr 40 Gly Arg Ser Thr 120 Gly	Gly Ser 25 Pro Thr Asp Glu Ser 105 Val	10 Gly Glu Thr Asn Asp 90 Tyr Ser	Phe Lys Tyr Ala 75 Thr Gly Ser Asp	Ala Arg Tyr 60 Lys Ala Val Gly Ile 140	Phe Leu 45 Pro Asn Met Leu Gly 125 Gln	Ser 30 Glu Asp Thr Tyr Phe 110 Gly	15 Ile Trp Thr Leu Tyr 95 Ala Gly Thr	Tyr Val Tyr 80 Cys Tyr Ser
<223 <400 Glu 1 Ser Asp Ala Lys 65 Leu Ala Trp Gly Thr 145	33> OT Val Leu Met Tyr 50 Gly Gln Arg Gly 130 Thr	CHER CQUEN Gln Lys Ser 35 Ile Arg Met His Gln 115 Gly Ser	INFO INFO Leu Leu 20 Trp Ser Phe Ser Gly Gly Ser	188 Val 5 Ser Val Ser Thr Gly Thr Leu	Glu Cys Arg Gly Ile 70 Leu Tyr Leu Gly Ser	Ser Ala Gln Gly 55 Ser Lys Gly Val Gly 135 Ala	Gly Ala Thr 40 Gly Arg Ser Thr 120 Gly Ser	Gly Ser 25 Pro Thr Asp Glu Ser 105 Val Gly Leu	10 Gly Glu Thr Asn Asp 90 Tyr Ser Gly	Phe Lys Tyr Ala 75 Thr Gly Ser Asp	Ala Arg Tyr 60 Lys Ala Val Gly Ile 140 Arg	Phe Leu 45 Pro Asn Met Leu Gly 125 Gln Val	Ser 30 Glu Asp Thr Tyr Phe 110 Gly Met	15 Ile Trp Thr Leu Tyr 95 Ala Gly Thr	Tyr Val Val Tyr 80 Cys Tyr Ser Gln Ser 160
<223 <400 Glu 1 Ser Asp Ala Lys 65 Leu Ala Trp Gly Thr 145 Cys	33> OT Val Leu Met Tyr 50 Gly Gln Arg Gly Gly Thr	THER GQUEN Gln Lys Ser 35 Ile Arg Met His Gln 115 Gly Ser Ala	INFO INFO INFO INFO INFO INFO INFO INFO	188 Val 5 Ser Val Ser Thr Ser 85 Gly Thr Leu Gln 165	Glu Cys Arg Gly Ile 70 Leu Tyr Leu Gly Ser 150	Ser Ala Gln Gly 55 Ser Lys Gly Val Gly 135 Ala	Gly Ala Thr 40 Gly Arg Ser Thr 120 Gly Ser Ser	Gly Ser 25 Pro Thr Asp Glu Ser 105 Val Gly Leu Asn	10 Gly Glu Thr Asn Asp 90 Tyr Ser Gly Tyr 170	Phe Lys Tyr Ala 75 Thr Gly Ser Asp 155 Leu	Ala Arg Tyr 60 Lys Ala Val Gly Ile 140 Arg Asn	Phe Leu 45 Pro Asn Met Leu Gly 125 Gln Val	Ser 30 Glu Asp Thr Tyr Phe 110 Gly Met Thr	15 Ile Trp Thr Leu Tyr 95 Ala Gly Thr Ile Gln 175	Tyr Val Tyr 80 Cys Tyr Ser Gln Ser 160 Gln

```
His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp
        195
                            200
Tyr Ser Leu Thr Ile Ser Asn Leu Glu Glu Glu Asp Phe Ala Thr Tyr
                        215
Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp Thr Phe Gly Gly Gly Thr
                                        235
225
                                                             240
Lys Leu Glu Ile Lys
<210> SEQ ID NO 189
<211> LENGTH: 1107
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PE38 WT as expressed by pIEX02-001 (pET14b-K
<400> SEQUENCE: 189
atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat
                                                                       60
                                                                      120
atgccaqaaq qcqqtaqcct qqccqctctq accqcacatc aqqcctqtca cctqccqctq
gaaaccttca cccgtcaccg tcagccgcgt ggttgggaac aactggaaca atgtggctat
                                                                      180
ccqqtacaqc qtctqqtqqc qctqtacctq qctqctcqtc tqtcttqqaa ccaaqtaqat
                                                                      240
caggicated giaacgeget ggcaagedeg ggitteeggig gigatetggg igaagetate
                                                                      300
                                                                      360
cqtqaacaac cqqaacaqqc tcqtctqqcq ctqaccctqq cqqcaqcqqa atctqaacqt
tttgtgcgcc agggtacggg taacgacgaa gctggcgctg cgagcggtcc tgccgactcc
                                                                      420
ggtgaegete tgetggaaeg taactaeeeg aeeggtgeag aatttetggg tgatggegge
                                                                      480
gatatetett tttetaceeg eggeaceeag aactggaceg ttgaaegtet getgeaggeg
                                                                      540
caccgtcaac tggaagaacg cggttacgtc ttcgtaggtt accacggtac cttcctggaa
                                                                      600
getgeteagt etategtgtt eggtggegta egtgetegta gecaggaeet ggatgeeate
                                                                      660
tggcgtggct tctacattgc gggtgatccg gccctggcct atggttatgc acaggatcag
                                                                      720
gagecagaeg etegtggteg tateegtaac ggegetetge tgegegtgta egtacegege
                                                                      780
agetecetge egggttteta tegtaetgge etgaecetgg etgegeegga ageageeggt
                                                                      840
gaagtggaac geetgategg ecateegetg ecaetgegte tggaegetat eactggteet
                                                                      900
gaagaagagg gtggtcgcct ggagactatc ctgggttggc cgctggctga acgcactgta
gtaatcccgt ccgcgatccc aacggatccg cgcaatgttg gtggcgatct ggacccaagc
totatocogg ataaagaaca ggotatttot goodtgoogg actaogooto coagoogggt
                                                                     1080
aaaccgccgc gtgaggacct gaagtaa
                                                                     1107
<210> SEQ ID NO 190
<211> LENGTH: 368
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PE38 WT as expressed by pIEX02-001 (pET14b-K
      PE38)
<400> SEOUENCE: 190
Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro
Arg Gly Ser His Met Pro Glu Gly Gly Ser Leu Ala Ala Leu Thr Ala
            20
                                25
                                                    30
His Gln Ala Cys His Leu Pro Leu Glu Thr Phe Thr Arg His Arg Gln
```

-continued

Pro	Arg 50	Gly	Trp	Glu	Gln	Leu 55	Glu	Gln	Cys	Gly	Tyr 60	Pro	Val	Gln	Arg	
Leu 65	Val	Ala	Leu	Tyr	Leu 70	Ala	Ala	Arg	Leu	Ser 75	Trp	Asn	Gln	Val	Asp 80	
Gln	Val	Ile	Arg	Asn 85	Ala	Leu	Ala	Ser	Pro 90	Gly	Ser	Gly	Gly	Asp 95	Leu	
Gly	Glu	Ala	Ile 100	Arg	Glu	Gln	Pro	Glu 105	Gln	Ala	Arg	Leu	Ala 110	Leu	Thr	
Leu	Ala	Ala 115	Ala	Glu	Ser	Glu	Arg 120	Phe	Val	Arg	Gln	Gly 125	Thr	Gly	Asn	
Asp	Glu 130	Ala	Gly	Ala	Ala	Ser 135	Gly	Pro	Ala	Asp	Ser 140	Gly	Asp	Ala	Leu	
Leu 145	Glu	Arg	Asn	Tyr	Pro 150	Thr	Gly	Ala	Glu	Phe 155	Leu	Gly	Asp	Gly	Gly 160	
Asp	Ile	Ser	Phe	Ser 165	Thr	Arg	Gly	Thr	Gln 170	Asn	Trp	Thr	Val	Glu 175	Arg	
Leu	Leu	Gln	Ala 180	His	Arg	Gln	Leu	Glu 185	Glu	Arg	Gly	Tyr	Val 190	Phe	Val	
Gly	Tyr	His 195	Gly	Thr	Phe	Leu	Glu 200	Ala	Ala	Gln	Ser	Ile 205	Val	Phe	Gly	
Gly	Val 210	Arg	Ala	Arg	Ser	Gln 215	Asp	Leu	Asp	Ala	Ile 220	Trp	Arg	Gly	Phe	
Tyr 225	Ile	Ala	Gly	Asp	Pro 230	Ala	Leu	Ala	Tyr	Gly 235	Tyr	Ala	Gln	Asp	Gln 240	
Glu	Pro	Asp	Ala	Arg 245	Gly	Arg	Ile	Arg	Asn 250	Gly	Ala	Leu	Leu	Arg 255	Val	
Tyr	Val	Pro	Arg 260	Ser	Ser	Leu	Pro	Gly 265	Phe	Tyr	Arg	Thr	Gly 270	Leu	Thr	
Leu	Ala	Ala 275	Pro	Glu	Ala	Ala	Gly 280	Glu	Val	Glu	Arg	Leu 285	Ile	Gly	His	
Pro	Leu 290	Pro	Leu	Arg	Leu	Asp 295	Ala	Ile	Thr	Gly	Pro 300	Glu	Glu	Glu	Gly	
Gly 305	Arg	Leu	Glu	Thr	Ile 310	Leu	Gly	Trp	Pro	Leu 315	Ala	Glu	Arg	Thr	Val 320	
Val	Ile	Pro	Ser	Ala 325	Ile	Pro	Thr	Asp	Pro 330	Arg	Asn	Val	Gly	Gly 335	Asp	
Leu	Asp	Pro	Ser 340	Ser	Ile	Pro	Asp	Lys 345	Glu	Gln	Ala	Ile	Ser 350	Ala	Leu	
Pro	Asp	Tyr 355	Ala	Ser	Gln	Pro	Gly 360	Lys	Pro	Pro	Arg	Glu 365	Asp	Leu	Lys	
<213 <213 <213 <220 <223	0> SH L> LH 2> TY 3> OH 0> FH 3> OT	ENGTH (PE: RGAN) EATUR THER	H: 1: DNA SM: RE: INFO	LO7 Art: DRMA					E229	I) De	ÞET14	1b−K	PE3	3 E29	99D)	
atg	ggcag	gca ç	gccat	cat	ca to	catca	atcad	c ago	cagco	ggcc	tggt	gcc	gcg (eggea	agccat	60
atg	ccaga	aag g	geggt	agc	et ge	gccg	ctctç	g aco	cgcac	catc	aggo	cctgi	tca (cctgo	ecgetg 1	20
gaaa	acctt	ca d	cccgt	cac	eg to	cagc	cgcgt	ggt	tggg	gaac	aact	gga	aca a	atgt	ggctat 1	80
ccg	gtaca	agc g	gtate	ggtg	gc go	ctgta	accto	g gct	gata	cgtc	tgt	cttg	gaa (ccaaç	gtagat 2	40

-continued

caggtcat	cc g	taac	gege	t gg	gcaaq	geeeg	g ggt	teeg	gtg	gtga	atcto	999	tgaaq	gctatc	300
cgtgaaca	ac c	ggaa	cago	jc to	egtet	ggcg	g cto	gacco	tgg	cgg	cage	gga	atcto	gaacgt	360
tttgtgcg	jcc a	gggt	acgo	gg ta	aacga	acgaa	a gct	ggcg	gctg	cgaç	geggt	cc	tgcc	gactcc	420
ggtgacgo	ctc t	gctg	gaac	g ta	aacta	accco	g acc	ggtg	gcag	aatt	tcts	999	tgato	ggcggc	480
gatatete	tt t	ttct	acco	g cg	ggca	cccaç	g aad	tgga	eccg	ttga	aacgt	ct	gctg	caggcg	540
caccgtca	ac t	ggaa	gaac	g cg	ggtta	acgto	tto	gtag	gtt	acca	acggt	ac	cttc	ctggaa	600
gctgctca	ıgt c	tato	gtgt	t cg	ggtgg	gegta	a cgt	gcto	gta	gcca	aggad	cct	ggato	gccatc	660
tggcgtgg	get t	ctac	atto	ıc gç	ggtga	atccg	g gcd	cctg	geet	atg	gttat	gc	acag	gatcag	720
gagccaga	ecg c	tcgt	ggto	g ta	atcc	gtaad	gg	ggt	etge	tgc	gegte	gta	cgtad	ecgege	780
agctccct	gc c	gggt	ttct	a to	cgta	ctggo	ctg	gacco	tgg	ctg	geeg	gga	agcaç	gccggt	840
gaagtgga	ac g	cctg	jatos	g co	catco	egete	g cca	actgo	gtc	tgga	acgct	at	cacto	ggteet	900
gaagaaga	agg g	tggt	cgcc	t g	gaca	ctato	ctg	gggtt	ggc	cgct	gget	ga	acgca	actgta	960
gtaatccc	gt c	cgcg	gated	c aa	acgga	atcco	g cgo	caato	gttg	gtg	gcgat	ct	ggaco	ccaagc	1020
tctatccc	gg a	taaa	gaac	a g	gctat	ttct	geo	ectgo	cgg	acta	acgco	ctc	ccago	ccgggt	1080
aaaccgcc	gc g	tgag	gaco	t ga	aagta	aa									1107
<210 > SE <211 > LE <212 > TY <213 > OF <220 > FE <223 > OT	ÑGTH PE: RGANI EATUR	: 36 PRT SM: E:	8 Arti			-		E229	1) Q(pET14	1b-K	PE3	8 E29	99D)	
<400> SE	EQUEN	CE:	192												
Met Gly 1	Ser	Ser	His 5	His	His	His	His	His 10	Ser	Ser	Gly	Leu	Val 15	Pro	
Arg Gly		His 20	Met	Pro	Glu	Gly	Gly 25	Ser	Leu	Ala	Ala	Leu 30	Thr	Ala	
His Gln	Ala 35	Cys	His	Leu	Pro	Leu 40	Glu	Thr	Phe	Thr	Arg 45	His	Arg	Gln	
Pro Arg 50	Gly	Trp	Glu	Gln	Leu 55	Glu	Gln	Cys	Gly	Tyr 60	Pro	Val	Gln	Arg	
Leu Val 65	Ala	Leu	Tyr	Leu 70	Ala	Ala	Arg	Leu	Ser 75	Trp	Asn	Gln	Val	Asp 80	
Gln Val	Ile	Arg	Asn 85	Ala	Leu	Ala	Ser	Pro 90	Gly	Ser	Gly	Gly	Asp 95	Leu	
Gly Glu		Ile 100	Arg	Glu	Gln	Pro	Glu 105	Gln	Ala	Arg	Leu	Ala 110	Leu	Thr	
Leu Ala	Ala 115	Ala	Glu	Ser	Glu	Arg 120	Phe	Val	Arg	Gln	Gly 125	Thr	Gly	Asn	
Asp Glu 130	Ala	Gly	Ala	Ala	Ser 135	Gly	Pro	Ala	Asp	Ser 140	Gly	Asp	Ala	Leu	
Leu Glu 145	Arg	Asn	Tyr	Pro 150	Thr	Gly	Ala	Glu	Phe 155	Leu	Gly	Asp	Gly	Gly 160	
Asp Ile	Ser	Phe	Ser 165	Thr	Arg	Gly	Thr	Gln 170	Asn	Trp	Thr	Val	Glu 175	Arg	

Gly Tyr His Gly Thr Phe Leu Glu Ala Ala Gln Ser Ile Val Phe Gly 195 200 205

-continued

Gly	Val 210	Arg	Ala	Arg	Ser	Gln 215	Asp	Leu	Asp	Ala	Ile 220	Trp	Arg	Gly	Phe	
Tyr 225	Ile	Ala	Gly	Asp	Pro 230	Ala	Leu	Ala	Tyr	Gly 235	Tyr	Ala	Gln	Asp	Gln 240	
Glu	Pro	Asp	Ala	Arg 245	Gly	Arg	Ile	Arg	Asn 250	Gly	Ala	Leu	Leu	Arg 255	Val	
Tyr	Val	Pro	Arg 260	Ser	Ser	Leu	Pro	Gly 265	Phe	Tyr	Arg	Thr	Gly 270	Leu	Thr	
Leu	Ala	Ala 275	Pro	Glu	Ala	Ala	Gly 280	Glu	Val	Glu	Arg	Leu 285	Ile	Gly	His	
Pro	Leu 290	Pro	Leu	Arg	Leu	Asp 295	Ala	Ile	Thr	Gly	Pro 300	Glu	Glu	Glu	Gly	
Gly 305	Arg	Leu	Asp	Thr	Ile 310	Leu	Gly	Trp	Pro	Leu 315	Ala	Glu	Arg	Thr	Val 320	
Val	Ile	Pro	Ser	Ala 325	Ile	Pro	Thr	Asp	Pro 330	Arg	Asn	Val	Gly	Gly 335	Asp	
Leu	Asp	Pro	Ser 340	Ser	Ile	Pro	Asp	Lys 345	Glu	Gln	Ala	Ile	Ser 350	Ala	Leu	
Pro	Asp	Tyr 355	Ala	Ser	Gln	Pro	Gly 360	Lys	Pro	Pro	Arg	Glu 365	Asp	Leu	Lys	
<212 <213 <220	0 > FI 3 > O	PE: RGANI EATUI THER	DNA ISM: RE: INFO	Art:	rion	: PE	- 38 mi	ıt228		_			/ pIl	EXO2-	-228	
< 400)> SI	EQUEI	ICE :	193												
atg	ggcag	gca (gccat	tcat	ca to	catca	atcad	c ago	cagc	ggcc	tggt	gcc	gcg (eggea	agccat	60
atgo	ccaga	aag q	geggt	tage	et g	geeg	ctctg	g aco	cgca	catc	aggo	cctg	ca (cctg	ecgetg	120
gaaa	acctt	ca d	cccgt	tcac	eg to	cagco	egegt	ggt ggt	tgg	gaac	aact	gga	aca a	atgto	ggctat	180
ccgg	gtaca	agc (gtcto	ggtg	ge ge	etgta	accto	g gct	gct	egte	tgto	ettg	gaa (ccaaç	gtagat	240
															gctatc	300
															gaacgt	360
		-				_	_	_						-	gactcc	420
															ggcggc	480
															caggcg	540 600
															ctggaa	660
															gccatc gatcag	720
															ccgcgc	780
																840
															geeggt	900
															ggteet	
															actgta	960
															ccaagc	1020
						10 t 2 t		a a a				1000	TC 4	.0200	·caaa+	

tctatcccgg ataaagaaga ggctatttct gccctgccgg actacgcctc ccagccgggt

aaaccgccgc gtgaggacct gaagtaa

1080

<pre><210> SEQ ID NO 194 <211> LENGTH: 368 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PE38 mut228 as expressed by pIEX02-228</pre>
<400> SEQUENCE: 194
Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15
Arg Gly Ser His Met Pro Glu Gly Gly Ser Leu Ala Ala Leu Thr Ala 20 25 30
His Gln Ala Cys His Leu Pro Leu Glu Thr Phe Thr Arg His Arg Gln 35 40 45
Pro Arg Gly Trp Glu Gln Leu Glu Gln Cys Gly Tyr Pro Val Gln Arg 50 55 60
Leu Val Ala Leu Tyr Leu Ala Ala Arg Leu Ser Trp Asn Gln Val Asp 65 70 75 80
Gln Val Ile Arg Asn Ala Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu 85 90 95
Gly Glu Ala Ile Arg Glu Gln Pro Glu Gln Ala Arg Leu Ala Leu Thr
Leu Ala Ala Glu Ser Glu Arg Phe Val Arg Gln Gly Thr Gly Asn 115 120 125
Asp Glu Ala Gly Ala Ala Ser Gly Pro Ala Asp Ser Gly Asp Ala Leu 130 135 140
Leu Glu Arg Asn Tyr Pro Thr Gly Ala Glu Phe Leu Gly Asp Gly Gly 145 150 155 160
Asp Ala Ser Phe Ser Thr Arg Gly Thr Gln Asn Trp Arg Val Glu Arg 165 170 175
Leu Leu Gln Ala His Arg Gln Leu Glu Glu Arg Gly Tyr Val Phe Val 180 185 190
Gly Tyr His Gly Thr Phe Leu Glu Ala Ala Gln Ser Ile Val Phe Gly 195 200 205
Gly Val Arg Ala Arg Ser Gln Asp Leu Lys Ala Ile Trp Arg Gly Phe 210 215 220
Tyr Ile Ala Gly Asp Pro Ala Leu Ala Tyr Gly Tyr Ala Gln Asp Gln 225 230 235 240
Glu Pro Asp Ala Arg Gly Arg Ile Arg Asn Gly Ala Leu Leu Arg Val 245 250 255
Tyr Val Pro Arg Ser Thr Leu Pro Gly Phe Tyr Arg Thr Gly Leu Thr 260 265 270
Leu Ala Ala Pro Glu Ala Ala Gly Glu Val Glu Arg Leu Ile Gly His
Pro Leu Pro Leu Arg Leu Asp Ala Ile Thr Gly Pro Glu Glu Glu Gly 290 295 300
Gly Arg Leu Glu Thr Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr Val 305 310 315 320
Val Ile Pro Ser Ala Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp 325 330 335
Leu Asp Pro Ser Ser Ile Pro Asp Lys Glu Glu Ala Ile Ser Ala Leu 340 345 350
Pro Asp Tyr Ala Ser Gln Pro Gly Lys Pro Pro Arg Glu Asp Leu Lys

-continued

```
355
                            360
                                                365
<210> SEQ ID NO 195
<211> LENGTH: 1107
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: pIEX02-228 E299D (pET14b-K PE38 S253T D209K
      I153A T164R Q338E E299D)
<400> SEQUENCE: 195
atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat
atgccagaag gcggtagcct ggccgctctg accgcacatc aggcctgtca cctgccgctg
gaaaccttca cccgtcaccg tcagccgcgt ggttgggaac aactggaaca atgtggctat
                                                                     180
                                                                     240
cogqtacago qtctqqtqqc qctqtacctq qctqctcqtc tqtcttqqaa ccaaqtaqat
caggicatec giaacgeget ggeaageeeg ggiteeggig gigatetggg igaagetate
                                                                     300
cgtgaacaac cggaacaggc tcgtctggcg ctgaccctgg cggcagcgga atctgaacgt
                                                                     360
tttgtgcgcc agggtacggg taacgacgaa gctggcgctg cgagcggtcc tgccgactcc
                                                                     420
qqtqacqctc tqctqqaacq taactacccq accqqtqcaq aatttctqqq tqatqqcqqc
                                                                     480
gatgcctctt tttctacccg cggcacccag aactggagag ttgaacgtct gctgcaggcg
                                                                     540
caccgtcaac tggaagaacg cggttacgtc ttcgtaggtt accacggtac cttcctggaa
                                                                     600
gctgctcagt ctatcgtgtt cggtggcgta cgtgctcgta gccaggacct gaaggccatc
                                                                     660
tggcgtggct tctacattgc gggtgatccg gccctggcct atggttatgc acaggatcag
                                                                     720
gagecagaeg etegtggteg tateegtaae ggegetetge tgegegtgta egtaeegege
                                                                     780
agcaccetge egggttteta tegtaetgge etgaecetgg etgegeegga ageageeggt
                                                                     840
gaagtggaac geetgategg eeateegetg eeactgegte tggaegetat eactggteet
                                                                     900
gaagaagagg gtggtcgcct ggacactatc ctgggttggc cgctggctga acgcactgta
                                                                     960
gtaatcccgt ccgcgatccc aacggatccg cgcaatgttg gtggcgatct ggacccaagc
                                                                     1020
totatocogg ataaagaaga ggotatttot goodtgoogg actaogooto coagoogggt
                                                                     1080
aaaccgccgc gtgaggacct gaagtaa
                                                                     1107
<210> SEQ ID NO 196
<211> LENGTH: 368
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: pIEX02-228 E299D (pET14b-K PE38 S253T D209K
      I153A T164R Q338E E299D)
<400> SEQUENCE: 196
Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro
Arg Gly Ser His Met Pro Glu Gly Gly Ser Leu Ala Ala Leu Thr Ala
            2.0
                                25
His Gln Ala Cys His Leu Pro Leu Glu Thr Phe Thr Arg His Arg Gln
                            40
Pro Arg Gly Trp Glu Gln Leu Glu Gln Cys Gly Tyr Pro Val Gln Arg
Leu Val Ala Leu Tyr Leu Ala Ala Arg Leu Ser Trp Asn Gln Val Asp
                                        75
```

Gln Val Ile Arg Asn Ala Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu

90

85

Gly	Glu	Ala	Ile 100	Arg	Glu	Gln	Pro	Glu 105	Gln	Ala	Arg	Leu	Ala 110	Leu	Thr	
Leu	Ala	Ala 115	Ala	Glu	Ser	Glu	Arg 120	Phe	Val	Arg	Gln	Gly 125	Thr	Gly	Asn	
Asp	Glu 130	Ala	Gly	Ala	Ala	Ser 135	Gly	Pro	Ala	Asp	Ser 140	Gly	Asp	Ala	Leu	
Leu 145	Glu	Arg	Asn	Tyr	Pro 150	Thr	Gly	Ala	Glu	Phe 155	Leu	Gly	Asp	Gly	Gly 160	
Asp	Ala	Ser	Phe	Ser 165	Thr	Arg	Gly	Thr	Gln 170	Asn	Trp	Arg	Val	Glu 175	Arg	
Leu	Leu	Gln	Ala 180	His	Arg	Gln	Leu	Glu 185	Glu	Arg	Gly	Tyr	Val 190	Phe	Val	
Gly	Tyr	His 195	Gly	Thr	Phe	Leu	Glu 200	Ala	Ala	Gln	Ser	Ile 205	Val	Phe	Gly	
Gly	Val 210	Arg	Ala	Arg	Ser	Gln 215	Asp	Leu	Lys	Ala	Ile 220	Trp	Arg	Gly	Phe	
Tyr 225	Ile	Ala	Gly	Asp	Pro 230	Ala	Leu	Ala	Tyr	Gly 235	Tyr	Ala	Gln	Asp	Gln 240	
Glu	Pro	Asp	Ala	Arg 245	Gly	Arg	Ile	Arg	Asn 250	Gly	Ala	Leu	Leu	Arg 255	Val	
Tyr	Val	Pro	Arg 260	Ser	Thr	Leu	Pro	Gly 265	Phe	Tyr	Arg	Thr	Gly 270	Leu	Thr	
Leu	Ala	Ala 275	Pro	Glu	Ala	Ala	Gly 280	Glu	Val	Glu	Arg	Leu 285	Ile	Gly	His	
Pro	Leu 290	Pro	Leu	Arg	Leu	Asp 295	Ala	Ile	Thr	Gly	Pro 300	Glu	Glu	Glu	Gly	
Gly 305	Arg	Leu	Asp	Thr	Ile 310	Leu	Gly	Trp	Pro	Leu 315	Ala	Glu	Arg	Thr	Val 320	
Val	Ile	Pro	Ser	Ala 325	Ile	Pro	Thr	Asp	Pro 330	Arg	Asn	Val	Gly	Gly 335	Asp	
Leu	Asp	Pro	Ser 340	Ser	Ile	Pro	Asp	Lys 345	Glu	Glu	Ala	Ile	Ser 350	Ala	Leu	
Pro	Asp	Tyr 355	Ala	Ser	Gln	Pro	Gly 360	ГЛа	Pro	Pro	Arg	Glu 365	Asp	Leu	Lys	
<211 <212 <213 <220 <223	0> FE 3> OI I1	ENGTH PE: RGANI EATUF THER .53T	H: 1: DNA ISM: RE: INFO	Art: ORMA:	ific: FION: 338E)	pII			(pE	.14b	-К РІ	238 £	S2535	Г D20	09K R204A	
)> SE				ra to	ratca	atcac	add	radco	aacc	taat	-acc	aca o	raac	agccat	60
															eegetg	120
															ggctat gtagat	180
															getate	300
															gaacgt	360
															gactcc	420
ggt	gacgo	ctc t	gct	ggaad	eg ta	acta	acccg	g acc	ggtg	gcag	aatt	tctç	ggg t	tgate	ggcggc	480

-continued

gatacctctt tt	tctacccg co	gcacccag	aactggg	ccg ttga	acgtct (gctgcaggcg	540
caccgtcaac tg	gaagaacg cg	gttacgtc	ttcgtag	gtt acca	acggtac (cttcctggaa	600
getgeteagt eta	atcgtgtt cg	ggtggcgta	cgtgctg	cca gcca	aggacct (gaaggccatc	660
tggcgtggct tc	tacattgc go	ggtgatccg	geeetgg	cct atgg	gttatgc .	acaggatcag	720
gagccagacg cto	egtggteg ta	atccgtaac	ggegete	tgc tgcg	gegtgta	cgtaccgcgc	780
agcaccctgc cg	ggtttcta to	egtactgge	ctgaccc	tgg ctgd	egeegga .	agcagccggt	840
gaagtggaac gc	ctgatcgg co	cateegetg	ccactgc	gtc tgga	acgctat	cactggtcct	900
gaagaagagg gto	ggtegeet ge	gagactato	ctgggtt	ggc cgct	ggctga	acgcactgta	960
gtaatecegt ee	gcgatccc aa	acggatccg	g cgcaatg	ttg gtgg	gegatet	ggacccaagc	1020
tctatcccgg ata	aaagaaga gg	gctatttct	geeetge	cgg acta	acgcctc	ccagccgggt	1080
aaaccgccgc gt	gaggacct ga	agtaa					1107
<pre><210> SEQ ID I <211> LENGTH: <212> TYPE: PI <213> ORGANISI <220> FEATURE <223> OTHER II</pre>	368 RT M: Artifici :	pIEX02-		14b-K PF	I38 S253'	T D209K R2	04A
<400> SEQUENCI	E: 198						
Met Gly Ser Se	er His His 5	His His	His His 10	Ser Ser	Gly Leu	Val Pro 15	
Arg Gly Ser H:		Glu Gly	Gly Ser 25	Leu Ala	Ala Leu 30	Thr Ala	
His Gln Ala Cy 35	ys His Leu	Pro Leu 40	Glu Thr	Phe Thr	Arg His 45	Arg Gln	
Pro Arg Gly Tr 50	rp Glu Gln	Leu Glu 55	Gln Cys	Gly Tyr 60	Pro Val	Gln Arg	
Leu Val Ala Le 65	eu Tyr Leu 70	Ala Ala	-	Ser Trp 75	Asn Gln	Val Asp 80	
Gln Val Ile A	rg Asn Ala 85	Leu Ala	Ser Pro 90	Gly Ser	Gly Gly	Asp Leu 95	
Gly Glu Ala II	le Arg Glu 00	Gln Pro	Glu Gln 105	Ala Arg	Leu Ala 110		
Leu Ala Ala A 115	la Glu Ser	Glu Arg 120	Phe Val	Arg Gln	Gly Thr 125	Gly Asn	
Asp Glu Ala G	ly Ala Ala	Ser Gly 135	Pro Ala	Asp Ser 140	Gly Asp	Ala Leu	
Leu Glu Arg As 145	sn Tyr Pro 150	Thr Gly		Phe Leu 155	Gly Asp	Gly Gly 160	
Asp Thr Ser Ph	he Ser Thr 165	Arg Gly	Thr Gln 170	Asn Trp	Ala Val	Glu Arg 175	
Leu Leu Gln A	la His Arg 80	Gln Leu	Glu Glu 185	Arg Gly	Tyr Val		
Gly Tyr His G	ly Thr Phe	Leu Glu 200	Ala Ala	Gln Ser	Ile Val 205	Phe Gly	
Gly Val Arg A	la Ala Ser	Gln Asp 215	Leu Lys	Ala Ile 220	Trp Arg	Gly Phe	
Tyr Ile Ala G	ly Asp Pro 230	Ala Leu	_	Gly Tyr 235	Ala Gln	Asp Gln 240	
Gl., D., J., J.] -] G]	7 T7-	3	G1 71-	T T	7 TT- 7	

Glu Pro Asp Ala Arg Gly Arg Ile Arg Asn Gly Ala Leu Leu Arg Val

				245					250					255		
Tyr	Val	Pro	Arg 260	Ser	Thr	Leu	Pro	Gly 265	Phe	Tyr	Arg	Thr	Gly 270	Leu	Thr	
Leu	Ala	Ala 275	Pro	Glu	Ala	Ala	Gly 280	Glu	Val	Glu	Arg	Leu 285	Ile	Gly	His	
Pro	Leu 290	Pro	Leu	Arg	Leu	Asp 295	Ala	Ile	Thr	Gly	Pro 300	Glu	Glu	Glu	Gly	
Gly 305	Arg	Leu	Glu	Thr	Ile 310	Leu	Gly	Trp	Pro	Leu 315	Ala	Glu	Arg	Thr	Val 320	
Val	Ile	Pro	Ser	Ala 325	Ile	Pro	Thr	Asp	Pro 330	Arg	Asn	Val	Gly	Gly 335	Asp	
Leu	Asp	Pro	Ser 340	Ser	Ile	Pro	Asp	Lys 345	Glu	Glu	Ala	Ile	Ser 350	Ala	Leu	
Pro	Asp	Tyr 355	Ala	Ser	Gln	Pro	Gly 360	Lys	Pro	Pro	Arg	Glu 365	Asp	Leu	Lys	
<211 <212 <213 <220 <223	> LE > T\ > OF > FE > OT R2	ENGTH (PE: RGAN] EATUR THER 204A	SM: RE: INFO	Art: ORMA:	ION:	pIl	Seque EX02- BE E2	244		I) De	ÞET14	lb-K	PE3	8 S25	53T D20	9K
atac	iaa sa	702 0	raast	cat	10 to	nata:	at a a	. 200	1200	aaaa	taat	- 0000	700	aaaa	agccat	60
								_					_		ccgctg	120
_	_			-		_			-			_		_		180
															ggctat	
															gtagat	240
														_	gctatc	300
															gaacgt	360
															gactcc	420
	_				_										ggegge	480
gata	ccto	ctt t	ttct	tacco	eg eg	ggca	cccaç	g aac	tggg	gccg	ttga	aacgt	ct	gctg	caggcg	540
cacc	gtca	aac t	ggaa	agaa	g cg	ggtta	acgto	tto	gtag	ggtt	acca	acggt	ac	cttc	ctggaa	600
gctg	ctca	agt o	ctato	gtgt	t cg	gtg	gegta	ı cgt	gct	gcca	gcca	aggad	cct	gaag	gccatc	660
tggc	gtgg	get t	cta	catt	ge ge	gtga	atcco	g gcc	cctg	geet	atgg	gttat	gc	acago	gatcag	720
gago	caga	acg o	ctcgt	tggt	g ta	itcc	gtaac	ggd	gata	ctgc	tgcg	gagt	gta	cgtad	cegege	780
agca	ccct	gc o	gggt	tttc	a to	gta	ctggd	cts	gacco	ctgg	ctgo	gccg	gga	agcaç	gccggt	840
gaag	ıtgga	aac ç	gaat	gatc	gg co	catco	gate	g cca	ectgo	egte	tgga	acgct	at	cacto	ggtcct	900
gaag	aaga	agg g	gtggt	taga	et gg	gaca	ctato	cto	ggtt	ggc	cgct	ggct	ga	acgca	actgta	960
gtaa	iteed	gt o	eegeg	gatco	cc aa	acgga	atccg	g ege	caato	gttg	gtgg	gcgat	ct	ggaco	ccaagc	1020
tcta	tccc	gg a	ataaa	agaa	ga go	gctat	ttct	gcc	ctgo	ccgg	acta	acgco	ctc	ccago	ccgggt	1080
aaac	egec	ege g	gtgag	ggac	et ga	agta	aa									1107
<211 <212 <213	> LE > T\ > OF > FE	ENGTH (PE : RGAN) EATUR	SM: RE:	68		ial s	Seque	ence	Ho c c		- DM4	11. 75	DEC	0. 00.	-am bee	or.

<223> OTHER INFORMATION: pIEX02-244 E299D (pET14b-K PE38 S253T D209K

_															
	R	204A	I153	3T T	164A	Q33	8E E2	299D))						
< 400)> SI	EQUEI	ICE :	200											
Met 1	Gly	Ser	Ser	His 5	His	His	His	His	His 10	Ser	Ser	Gly	Leu	Val 15	Pro
Arg	Gly	Ser	His 20	Met	Pro	Glu	Gly	Gly 25	Ser	Leu	Ala	Ala	Leu 30	Thr	Ala
His	Gln	Ala 35	Cys	His	Leu	Pro	Leu 40	Glu	Thr	Phe	Thr	Arg 45	His	Arg	Gln
Pro	Arg 50	Gly	Trp	Glu	Gln	Leu 55	Glu	Gln	CAa	Gly	Tyr 60	Pro	Val	Gln	Arg
Leu 65	Val	Ala	Leu	Tyr	Leu 70	Ala	Ala	Arg	Leu	Ser 75	Trp	Asn	Gln	Val	Asp
Gln	Val	Ile	Arg	Asn 85	Ala	Leu	Ala	Ser	Pro 90	Gly	Ser	Gly	Gly	Asp 95	Leu
Gly	Glu	Ala	Ile 100	Arg	Glu	Gln	Pro	Glu 105	Gln	Ala	Arg	Leu	Ala 110	Leu	Thr
Leu	Ala	Ala 115	Ala	Glu	Ser	Glu	Arg 120	Phe	Val	Arg	Gln	Gly 125	Thr	Gly	Asn
Asp	Glu 130	Ala	Gly	Ala	Ala	Ser 135	Gly	Pro	Ala	Asp	Ser 140	Gly	Asp	Ala	Leu
Leu 145	Glu	Arg	Asn	Tyr	Pro 150	Thr	Gly	Ala	Glu	Phe 155	Leu	Gly	Asp	Gly	Gly 160
Asp	Thr	Ser	Phe	Ser 165	Thr	Arg	Gly	Thr	Gln 170	Asn	Trp	Ala	Val	Glu 175	Arg
Leu	Leu	Gln	Ala 180	His	Arg	Gln	Leu	Glu 185	Glu	Arg	Gly	Tyr	Val 190	Phe	Val
Gly	Tyr	His 195	Gly	Thr	Phe	Leu	Glu 200	Ala	Ala	Gln	Ser	Ile 205	Val	Phe	Gly
Gly	Val 210	Arg	Ala	Ala	Ser	Gln 215	Asp	Leu	Lys	Ala	Ile 220	Trp	Arg	Gly	Phe
Tyr 225	Ile	Ala	Gly	Asp	Pro 230	Ala	Leu	Ala	Tyr	Gly 235	Tyr	Ala	Gln	Asp	Gln 240
Glu	Pro	Asp	Ala	Arg 245	Gly	Arg	Ile	Arg	Asn 250	Gly	Ala	Leu	Leu	Arg 255	Val
Tyr	Val	Pro	Arg 260	Ser	Thr	Leu	Pro	Gly 265	Phe	Tyr	Arg	Thr	Gly 270	Leu	Thr
Leu	Ala	Ala 275	Pro	Glu	Ala	Ala	Gly 280	Glu	Val	Glu	Arg	Leu 285	Ile	Gly	His
Pro	Leu 290	Pro	Leu	Arg	Leu	Asp 295	Ala	Ile	Thr	Gly	Pro 300	Glu	Glu	Glu	Gly
Gly 305	Arg	Leu	Asp	Thr	Ile 310	Leu	Gly	Trp	Pro	Leu 315	Ala	Glu	Arg	Thr	Val 320
Val	Ile	Pro	Ser	Ala 325	Ile	Pro	Thr	Asp	Pro 330	Arg	Asn	Val	Gly	Gly 335	Asp
Leu	Asp	Pro	Ser 340	Ser	Ile	Pro	Asp	Lys 345	Glu	Glu	Ala	Ile	Ser 350	Ala	Leu
Pro	Asp	Tyr 355	Ala	Ser	Gln	Pro	Gly 360	Lys	Pro	Pro	Arg	Glu 365	Asp	Leu	ГÀа
<21	L> LI	EQ II ENGTI YPE :	H: 1												

<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

-continued

<223> OTHER INFORMATION: pIEX02-246 (pET14b-K PE38 S253T D209K R204 I153A Q338E T164A)
<400> SEQUENCE: 201
atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat 60
atgccagaag gcggtagcct ggccgctctg accgcacatc aggcctgtca cctgccgctg 120
gaaacettca eeegteaeeg teageegegt ggttgggaae aaetggaaea atgtggetat 180
ceggtacage gtctggtgge gctgtacetg gctgctegte tgtcttggaa ccaagtagat 240
caggtcatcc gtaacgcgct ggcaagcccg ggttccggtg gtgatctggg tgaagctatc 300
cgtgaacaac cggaacaggc tegtetggeg etgaceetgg eggeagegga atetgaaegt 360
tttgtgegee agggtaeggg taaegaegaa getggegetg egageggtee tgeegaetee 420
ggtgacgctc tgctggaacg taactacccg accggtgcag aatttctggg tgatggcggc 480
gatgcctctt tttctacccg cggcacccag aactgggccg ttgaacgtct gctgcaggcg 540
cacegtcaac tggaagaacg eggttaegte ttegtaggtt accaeggtae etteetggaa 600
gctgctcagt ctatcgtgtt cggtggcgta cgtgctgcca gccaggacct gaaggccatc 660
tggcgtggct tctacattgc gggtgatccg gccctggcct atggttatgc acaggatcag 720
gagecagaeg etegtggteg tateegtaae ggegetetge tgegegtgta egtaeegege 780
agcaccetge egggttteta tegtaetgge etgaeeetgg etgegeegga agcageeggt 840
gaagtggaac geetgategg ceateegetg ceaetgegte tggaegetat caetggteet 900
gaagaagagg gtggtcgcct ggagactatc ctgggttggc cgctggctga acgcactgta 960
gtaatcccgt ccgcgatccc aacggatccg cgcaatgttg gtggcgatct ggacccaagc 1020
tctatcccgg ataaagaaga ggctatttct gccctgccgg actacgcctc ccagccgggt 1080
aaaccgccgc gtgaggacct gaagtaa 1107
<pre><210> SEQ ID NO 202 <211> LENGTH: 368 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: pIEX02-246 (pET14b-K PE38 S253T D209K R204</pre>
<400> SEQUENCE: 202
Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15
Arg Gly Ser His Met Pro Glu Gly Gly Ser Leu Ala Ala Leu Thr Ala 20 25 30
His Gln Ala Cys His Leu Pro Leu Glu Thr Phe Thr Arg His Arg Gln 35 40 45
Pro Arg Gly Trp Glu Gln Leu Glu Gln Cys Gly Tyr Pro Val Gln Arg 50 55 60
Leu Val Ala Leu Tyr Leu Ala Ala Arg Leu Ser Trp Asn Gln Val Asp 65 70 75 80
Gln Val Ile Arg Asn Ala Leu Ala Ser Pro Gly Ser Gly Gly Asp Leu 85 90 95
Gly Glu Ala Ile Arg Glu Gln Pro Glu Gln Ala Arg Leu Ala Leu Thr 100 105 110
Leu Ala Ala Ala Glu Ser Glu Arg Phe Val Arg Gln Gly Thr Gly Asn 115 120 125

Asp Glu Ala Gly Ala Ala Ser Gly Pro Ala Asp Ser Gly Asp Ala Leu

-continued

											_	COII	CIII	uea					
	130					135					140								
Leu 145	Glu	Arg	Asn	Tyr	Pro 150		Gly	Ala	Glu	Phe 155	Leu	Gly	Asp	Gly	Gly 160				
Asp	Ala	Ser	Phe	Ser 165		Arg	Gly	Thr	Gln 170	Asn	Trp	Ala	Val	Glu 175	Arg				
Leu	Leu	Gln	Ala 180	His	Arg	Gln	Leu	Glu 185	Glu	Arg	Gly	Tyr	Val 190	Phe	Val				
Gly	Tyr	His 195	Gly	Thr	Phe	Leu	Glu 200	Ala	Ala	Gln	Ser	Ile 205	Val	Phe	Gly				
Gly	Val 210	Arg	Ala	Ala	Ser	Gln 215	Asp	Leu	Lys	Ala	Ile 220	Trp	Arg	Gly	Phe				
Tyr 225	Ile	Ala	Gly	Asp	Pro 230	Ala	Leu	Ala	Tyr	Gly 235	Tyr	Ala	Gln	Asp	Gln 240				
Glu	Pro	Asp	Ala	Arg 245		Arg	Ile	Arg	Asn 250	Gly	Ala	Leu	Leu	Arg 255	Val				
Tyr	Val	Pro	Arg 260	Ser	Thr	Leu	Pro	Gly 265	Phe	Tyr	Arg	Thr	Gly 270	Leu	Thr				
Leu	Ala	Ala 275	Pro	Glu	Ala	Ala	Gly 280	Glu	Val	Glu	Arg	Leu 285	Ile	Gly	His				
Pro	Leu 290	Pro	Leu	Arg	Leu	Asp 295	Ala	Ile	Thr	Gly	Pro 300	Glu	Glu	Glu	Gly				
Gly 305	Arg	Leu	Glu	Thr	Ile 310		Gly	Trp	Pro	Leu 315	Ala	Glu	Arg	Thr	Val 320				
Val	Ile	Pro	Ser	Ala 325	Ile	Pro	Thr	Asp	Pro 330	Arg	Asn	Val	Gly	Gly 335	Asp				
Leu	Asp	Pro	Ser 340		Ile	Pro	Asp	Lys 345		Glu	Ala	Ile	Ser 350	Ala	Leu				
Pro	Asp	Tyr 355		Ser	Gln	Pro	Gly 360		Pro	Pro	Arg	Glu 365		Leu	Lys				
<210 <211 <212 <213 <220 <223	> LH > TY > OH > FH > OT	ENGTI (PE : RGAN : EATUI THER	H: 1: DNA ISM: RE: INFO	107 Art: ORMA'		: pI	EX02	-246	E299	I) De	pET14	4b-K	PE3	3 S25	53T D209K				
< 400	> SI	EQUEI	NCE:	203															
atgg	gcag	gca q	gccat	tcat	ca t	catc	atcad	c ag	cagc	ggcc	tggi	tgcc	gcg (eggea	agccat	60			
atgc	caga	aag q	geggt	tagc	ct g	gccg	ctct	g ac	cgcad	catc	agg	cctg	ca o	cctgo	eegetg	120			
gaaa	.cctt	ca d	cccgt	tcac	cg t	cagc	cgcgt	t gg	ttgg	gaac	aact	tggaa	aca a	atgto	ggctat	180			
ccgg	taca	agc (gtct	ggtg	gc g	ctgt	acct	g gc	tgct	gtc	tgt	cttg	gaa (ccaa	gtagat	240			
cagg	tcat	cc (gtaa	cgcg	ct g	gcaa	gccc	g gg1	ttcc	ggtg	gtg	atct	999 1	tgaaq	gctatc	300			
cgtg	aaca	aac o	eggaa	acag	gc t	cgtc	tggc	g ct	gacco	ctgg	cgg	cagc	gga a	atct	gaacgt	360			
tttg	tgcg	gcc a	agggt	tacg	gg t	aacg	acgaa	a gc	tggc	gctg	cga	geggt	tee 1	tgaaq	gactcc	420			
ggtg	acgo	ctc t	tgct	ggaa	cg ta	aact	accc	g ac	eggt	gcag	aati	ttct	ggg 1	tgato	ggcggc	480			
gatg	ccto	ctt t	tttc	tacc	cg c	ggca	ccca	g aa	ctgg	gccg	ttga	aacgi	tct (gctg	caggcg	540			
cacc	gtca	aac t	tggaa	agaa	cg c	ggtt	acgt	c tt	cgtaq	ggtt	acca	acggt	tac (cttco	ctggaa	600			
gctg	ctca	agt o	ctate	cgtg	tt c	ggtg	gcgta	a cgi	tgata	gcca	gcca	agga	cct q	gaag	gccatc	660			

tggcgtggct tctacattgc gggtgatccg gccctggcct atggttatgc acaggatcag

					-001101	naca	
gagccagacg	ctcgtggt	cg tatcc	gtaac gg	egetetge	tgcgcgtgta	cgtaccgcgc	780
agcaccctgc	egggttte	ta tcgta	ctggc ct	gaccctgg	ctgcgccgga	agcagccggt	840
gaagtggaac	gcctgatc	gg ccatc	cgctg cc	actgcgtc	tggacgctat	cactggtcct	900
gaagaagagg	gtggtcgc	ct ggaca	ctatc ct	gggttggc	cgctggctga	a acgcactgta	960
gtaatcccgt	ccgcgatc	cc aacgg	atccg cg	caatgttg	gtggcgatct	ggacccaagc	1020
tctatcccgg .	ataaagaa	ga ggcta	tttct gc	cctgccgg	actacgccto	c ccagccgggt	1080
aaaccgccgc	gtgaggac	ct gaagt	aa				1107
R204	H: 368 PRT ISM: Art RE: INFORMA I153A Q3:	TION: pI	- EX02-246		pET14b-K PF	338 S253T D20	99K
<400> SEQUE	NCE: 204						
Met Gly Ser 1	Ser His 5	His His	His His	His Ser 10	Ser Gly Le	u Val Pro 15	
Arg Gly Ser	His Met 20	Pro Glu	Gly Gly 25	Ser Leu	Ala Ala Le		
His Gln Ala 35	Cys His	Leu Pro	Leu Glu 40	Thr Phe	Thr Arg Hi	s Arg Gln	
Pro Arg Gly 50	Trp Glu	Gln Leu 55	Glu Gln	Cys Gly	Tyr Pro Va	ıl Gln Arg	
Leu Val Ala 65	Leu Tyr	Leu Ala 70	Ala Arg	Leu Ser 75	Trp Asn Gl	n Val Asp 80	
Gln Val Ile	Arg Asn 85	Ala Leu	Ala Ser	Pro Gly 90	Ser Gly Gl	y Asp Leu 95	
Gly Glu Ala	Ile Arg 100	Glu Gln	Pro Glu 105	Gln Ala	Arg Leu Al		
Leu Ala Ala 115	Ala Glu	Ser Glu	Arg Phe 120	Val Arg	Gln Gly Th	nr Gly Asn	
Asp Glu Ala 130	Gly Ala	Ala Ser 135	Gly Pro	Ala Asp	Ser Gly As	sp Ala Leu	
Leu Glu Arg 145	Asn Tyr	Pro Thr 150	Gly Ala	Glu Phe 155	Leu Gly As	sp Gly Gly 160	
Asp Ala Ser	Phe Ser 165	Thr Arg	Gly Thr	Gln Asn 170	Trp Ala Va	al Glu Arg 175	
Leu Leu Gln	Ala His 180	Arg Gln	Leu Glu 185	Glu Arg	Gly Tyr Va		
Gly Tyr His 195	Gly Thr	Phe Leu	Glu Ala 200	Ala Gln	Ser Ile Va 205	ıl Phe Gly	
Gly Val Arg 210	Ala Ala	Ser Gln 215	Asp Leu	Lys Ala	Ile Trp Ar 220	g Gly Phe	
Tyr Ile Ala 225	Gly Asp	Pro Ala 230	Leu Ala	Tyr Gly 235	Tyr Ala Gl	n Asp Gln 240	
Glu Pro Asp	Ala Arg 245	Gly Arg	Ile Arg	Asn Gly 250	Ala Leu Le	eu Arg Val 255	
Tyr Val Pro	Arg Ser 260	Thr Leu	Pro Gly 265		Arg Thr Gl		
Leu Ala Ala 275	Pro Glu	Ala Ala	Gly Glu 280	Val Glu	Arg Leu Il 285	e Gly His.	

```
Pro Leu Pro Leu Arg Leu Asp Ala Ile Thr Gly Pro Glu Glu Glu Gly
   290
                        295
Gly Arg Leu Asp Thr Ile Leu Gly Trp Pro Leu Ala Glu Arg Thr Val
Val Ile Pro Ser Ala Ile Pro Thr Asp Pro Arg Asn Val Gly Gly Asp
                                    330
Leu Asp Pro Ser Ser Ile Pro Asp Lys Glu Glu Ala Ile Ser Ala Leu
                              345
Pro Asp Tyr Ala Ser Gln Pro Gly Lys Pro Pro Arg Glu Asp Leu Lys
<210> SEQ ID NO 205
<211> LENGTH: 24
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: OL 001 M13 FOR
<400> SEQUENCE: 205
cgccagggtt ttcccagtca cgac
                                                                       24
<210> SEQ ID NO 206
<211> LENGTH: 24
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 002 M13 REV
<400> SEQUENCE: 206
agcggataac aatttcacac agga
                                                                       2.4
<210> SEQ ID NO 207
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2043 RFB4 VH5' PCR primer sequence
<400> SEQUENCE: 207
gaagtgcagc tggtggag
                                                                       18
<210> SEQ ID NO 208
<211> LENGTH: 49
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2044 RFB4 VH3' PCR primer sequence
<400> SEQUENCE: 208
cagagecace teegeetgaa eegeeteeae etgaggagae agtgaceag
                                                                       49
<210> SEQ ID NO 209
<211> LENGTH: 50
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: OL 2045 RFB4 VK 5' PCR Primer Sequence
<400> SEQUENCE: 209
caggeggagg tggetetgge ggtggeggat eggatateca gatgaeceag
<210> SEQ ID NO 210
<211> LENGTH: 19
<212> TYPE: DNA
```

-continued

```
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2046 RFB4 VK 3' PCR Primer sequence
<400> SEQUENCE: 210
tttgatctcc agcttggtg
                                                                        19
<210> SEQ ID NO 211
<211> LENGTH: 35
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2047 RFB4 Pull through Primer (FOR))
<400> SEQUENCE: 211
                                                                        35
cccagccggc catggcggaa gtgcagctgg tggag
<210> SEQ ID NO 212
<211> LENGTH: 41
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2048 RFB4 Pull through Primer (REV)
<400> SEQUENCE: 212
                                                                        41
ggtgctcgag tgcggccgcc cgtttgatct ccagcttggt g
<210> SEQ ID NO 213
<211> LENGTH: 39
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2097 IEX02 GroEL/ES REV
<400> SEQUENCE: 213
aaccgcccgg ccgttcttct ccgtgttgcc cggaaagcc
                                                                        39
<210> SEQ ID NO 214
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2098 IEX02 GroEL/ES FOR
<400> SEQUENCE: 214
gggccaaagc ttgttcttgt ttgagtccac tcatgg
                                                                        36
<210> SEQ ID NO 215
<211> LENGTH: 32
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: OL 2154 IEX02 PE38 FOR, introducing NdeI
<400> SEQUENCE: 215
                                                                        32
attgtccata tgccagaagg cggtagcctg gc
<210> SEQ ID NO 216
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: OL 2161 IEX02 PE38 REV, introducing XhoI
<400> SEQUENCE: 216
                                                                        32
```

atcctcgagt tacttcaggt cctcacgcgg cg

-continued

```
<210> SEQ ID NO 217
<211> LENGTH: 30
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2162 IEX02 PE38 NM E229D FOR
<400> SEQUENCE: 217
gggtggtcgc ctggacacta tcctgggttg
                                                                        30
<210> SEQ ID NO 218
<211> LENGTH: 30
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: OL 2163 IEX02 PE38 NM E229D REV
<400> SEQUENCE: 218
caacccagga tagtgtccag gcgaccaccc
                                                                        30
<210> SEQ ID NO 219
<211> LENGTH: 40
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: OL 2164 IEX02 PE38 S253N
<400> SEQUENCE: 219
cagtacgata gaaacccggc agattgctgc gcggtacgta
                                                                        40
<210> SEQ ID NO 220
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2165 IEX02 PE38 S253K
<400> SEOUENCE: 220
cagtacgata gaaacccggc agcttgctgc gcggtacgta
                                                                        40
<210> SEQ ID NO 221
<211> LENGTH: 40
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2166 IEX02 PE38 S253P
<400> SEQUENCE: 221
                                                                        40
cagtacgata gaaacccggc agagggctgc gcggtacgta
<210> SEQ ID NO 222
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2167 IEX02 PE38 S253T
<400> SEQUENCE: 222
cagtacgata gaaacccggc agggtgctgc gcggtacgta
                                                                        40
<210> SEQ ID NO 223
<211> LENGTH: 33
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
```

<220> FEATURE:

```
<223> OTHER INFORMATION: OL 2168 IEX02 PE38 Q206R
<400> SEQUENCE: 223
gtacgtgctc gtagcagaga cctggatgcc atc
                                                                       33
<210> SEQ ID NO 224
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2169 IEX02 PE38 Q206R
<400> SEQUENCE: 224
gatggcatcc aggtctctgc tacgagcacg tac
                                                                       33
<210> SEQ ID NO 225
<211> LENGTH: 33
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2170 IEX02 PE38 D209K
<400> SEQUENCE: 225
                                                                       33
cgtagccagg acctgaaggc catctggcgt ggc
<210> SEQ ID NO 226
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: OL 2171 IEX02 PE38 D209K
<400> SEQUENCE: 226
gccacgccag atggccttca ggtcctggct acg
                                                                       33
<210> SEQ ID NO 227
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2183 IEX02 PE38 I196A FOR, to pair with
      OL2161
<400> SEQUENCE: 227
gaagetgete agtetgeegt gtteggtgge gt
                                                                       32
<210> SEQ ID NO 228
<211> LENGTH: 32
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: OL 2184 IEX02 PE38 I196A REV, to pair with
<400> SEQUENCE: 228
                                                                       32
acgccaccga acacggcaga ctgagcagct tc
<210> SEQ ID NO 229
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2185 IEX02 PE38 I196N FOR, to pair with
      OL2161
<400> SEQUENCE: 229
```

```
gaagetgete agtetaacgt gtteggtgge gt
                                                                       32
<210> SEQ ID NO 230
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2186 IEX02 PE38 I196N REV, to pair with
      OL2268
<400> SEQUENCE: 230
acgccaccga acacgttaga ctgagcagct tc
                                                                       32
<210> SEQ ID NO 231
<211> LENGTH: 33
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2187 IEX02 to introduce I153A FOR
<400> SEQUENCE: 231
ggtgatggcg gcgatgcctc tttttctacc cgc
                                                                       33
<210> SEQ ID NO 232
<211> LENGTH: 33
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2188 IEX02 to introduce I153A REV
<400> SEQUENCE: 232
gcgggtagaa aaagaggcat cgccgccatc acc
                                                                       33
<210> SEQ ID NO 233
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2189 IEX02 to introduce I153T FOR
<400> SEQUENCE: 233
ggtgatggcg gcgatacctc tttttctacc cgc
                                                                       33
<210> SEQ ID NO 234
<211> LENGTH: 33
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2190 IEX02 to introduce I153T REV
<400> SEQUENCE: 234
gcgggtagaa aaagaggtat cgccgccatc acc
                                                                       33
<210> SEQ ID NO 235
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: OL 2191 IEX02 to introduce I153H FOR
<400> SEQUENCE: 235
                                                                       33
ggtgatggcg gcgatcactc tttttctacc cgc
<210> SEQ ID NO 236
<211> LENGTH: 33
<212> TYPE: DNA
```

```
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2192 IEX02 to introduce I153H REV
<400> SEQUENCE: 236
gcgggtagaa aaagagtgat cgccgccatc acc
                                                                       33
<210> SEQ ID NO 237
<211> LENGTH: 32
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2193 IEX02 to introduce T164R FOR
<400> SEQUENCE: 237
                                                                       32
gcacccagaa ctggagagtt gaacgtctgc tg
<210> SEQ ID NO 238
<211> LENGTH: 32
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2194 IEX02 to introduce T164R REV
<400> SEQUENCE: 238
cagcagacgt tcaactctcc agttctgggt gc
                                                                       32
<210> SEQ ID NO 239
<211> LENGTH: 39
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2216 IEX02 Linker to optimize Kozak in
      pET14b, to anneal with OL2217
<400> SEQUENCE: 239
catggtggct ctccttctta aagttaaaca aaattattt
                                                                       39
<210> SEQ ID NO 240
<211> LENGTH: 39
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2217 IEX02 Linker to optimize Kozak in
      pET14b, to anneal with OL2216
<400> SEQUENCE: 240
ctagaaataa ttttgtttaa ctttaagaag gagagccac
                                                                       39
<210> SEQ ID NO 241
<211> LENGTH: 38
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2268 IEX02 outside FOR spanns over XbaI site
      (pET14b) - to be paired with OL2161
<400> SEQUENCE: 241
                                                                       38
atctccctct agaaataatt ttgtttaact ttaagaag
<210> SEQ ID NO 242
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2279 IEX02 FOR oligo to remove TM to be
     paired with OL2161
```

<400>	SEQUENCE: 242	
daadd	gete agtetategt gtteggtgge gt	32
gaage	-3000 490040036 3000330330 30	32
<211><212><213>	SEQ ID NO 243 LENGTH: 32 TYPE: DNA ORGANISM: Artificial Sequence FEATURE:	
<223>	OTHER INFORMATION: OL 2280 IEX02 REV oligo to remove TM to be paired with OL2268	
<400>	SEQUENCE: 243	
acgcca	accga acacgataga ctgagcagct tc	32
<211><212><213><223>	SEQ ID NO 244 LENGTH: 32 TYPE: DNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: OL 2281 IEX02 A201 REV, ONLY for templates having Q206	
<400>	SEQUENCE: 244	
ctctg	ctacg ageaegggeg ceaeegaaea eg	32
<211><212><213><223>	SEQ ID NO 245 LENGTH: 32 TYPE: DNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: OL 2282 IEX02 A201 FOR, ONLY for templates having Q206	
<400>	SEQUENCE: 245	
cgtgti	ceggt ggegeeegtg etegtageag ag	32
<211><212><213><220>	SEQ ID NO 246 LENGTH: 33 TYPE: DNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: OL 2283 IEXO2 A204 REV, ONLY for templates having Q206	
<400>	SEQUENCE: 246	
catcca	aggte tetgetggea geaegtaege eae	33
<211><212><213><223>	SEQ ID NO 247 LENGTH: 33 TYPE: DNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: OL 2284 IEX02 A204 FOR, ONLY for templates having Q206	
<400>	SEQUENCE: 247	
gtggc	gtacg tgctgccagc agagacctgg atg	33
<211><212><213><220>	SEQ ID NO 248 LENGTH: 33 TYPE: DNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: OL 2285 IEXO2 Q204 REV, ONLY for templates	
	having Q206	

<400> SEQUENCE: 248		
catecaggte tetgetetga geaegtaege eac		33
<pre><210> SEQ ID NO 249 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: OL 2286 IEX02 Q204 FOR, having Q206</pre>	ONLY for templates	
<400> SEQUENCE: 249		
gtggcgtacg tgctcagagc agagacctgg atg		33
<pre><210> SEQ ID NO 250 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: OL 2287 IEXO2 A158 REV</pre>		
<400> SEQUENCE: 250		
ccagttctgg gtgccggcgg tagaaaaaga g		31
<210> SEQ ID NO 251 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: OL 2288 IEXO2 A158 FOR		
<400> SEQUENCE: 251		
ctctttttct accgccggca cccagaactg g		31
<pre><210 > SEQ ID NO 252 <211 > LENGTH: 36 <212 > TYPE: DNA <213 > ORGANISM: Artificial Sequence <220 > FEATURE: <223 > OTHER INFORMATION: OL 2289 IEX02 Q158 REV <400 > SEQUENCE: 252</pre>		
ccagttctgg gtgccctggg tagaaaaaga gatatc		36
<210> SEQ ID NO 253 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: OL 2290 IEX02 Q158 FOR		
<400> SEQUENCE: 253		
gatatetett tttetaceca gggcacecag aactgg		36
<210> SEQ ID NO 254 <211> LENGTH: 38 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: OL 2291 IEX02 S159 REV <400> SEQUENCE: 254		
gtccagttct gggtggagcg ggtagaaaaa gagatatc		38
O10. GEO TO NO OFF		

```
<211> LENGTH: 38
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2292 IEX02 S159 FOR
<400> SEQUENCE: 255
gatatetett tttetaceeg etceaceeag aactggae
                                                                        38
<210> SEQ ID NO 256
<211> LENGTH: 25
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2293 IEX02 T159 REV
<400> SEQUENCE: 256
                                                                        25
accacccaga actggaccgt tgaac
<210> SEQ ID NO 257
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2294 IEX02 T159 FOR
<400> SEQUENCE: 257
ccagttctgg gtggtgcggg tagaaaaaga g
                                                                        31
<210> SEQ ID NO 258
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2295 IEX02 generic REV oligo for mutations
      at 333
<400> SEQUENCE: 258
gagettgggt ccagategee acc
                                                                        2.3
<210> SEQ ID NO 259
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2296 IEX02 A333 FOR
<400> SEQUENCE: 259
                                                                        31
ctggacccaa gctctgcccc ggataaagaa c
<210> SEQ ID NO 260
<211> LENGTH: 28
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2297 IEX02 N333 FOR
<400> SEQUENCE: 260
                                                                        28
ctggacccaa gctctaaccc ggataaag
<210> SEQ ID NO 261
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2298 IEX02 T333 FOR
```

<400>	SEQUENCE: 261	
ctggad	cccaa gctctacccc ggataaag	28
<211><212><213><220>	SEQ ID NO 262 LENGTH: 31 TYPE: DNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: OL 2299 IEX02 Q333 FOR	
<400>	SEQUENCE: 262	
ctggad	ccaa gctctcagcc ggataaagaa c	31
<211><212><213><223>	SEQ ID NO 263 LENGTH: 28 TYPE: DNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: OL 2300 IEX02 H333 FOR	
<400>	SEQUENCE: 263	
ctggad	ccaa gctctcaccc ggataaag	28
<211><212><213><220>	SEQ ID NO 264 LENGTH: 48 TYPE: DNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: OL 2301 IEX02 N338 FOR	
<400>	SEQUENCE: 264	
ctggad	cccaa gctctatccc ggataaagaa aacgctattt ctgccctg	48
<211><212><213><220>	SEQ ID NO 265 LENGTH: 46 TYPE: DNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: OL 2302 IEX02 E338 FOR	
<400>	SEQUENCE: 265	
ctggad	cccaa getetateee ggataaagaa gaggetattt etgeee	46
<211><212><213><220>	SEQ ID NO 266 LENGTH: 28 TYPE: DNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: OL 2303 IEX02 V201A REV	
<400>	SEQUENCE: 266	
ctggct	acga gcacgggcgc caccgaac	28
<211><212><213><223>	SEQ ID NO 267 LENGTH: 28 TYPE: DNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: OL 2304 IEX02 V201A FOR SEQUENCE: 267	
gttcg	gtggc gcccgtgctc gtagccag	28
	SEQ ID NO 268 LENGTH: 30	

```
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2305 IEX02 R204A REV, ONLY for templates
      having D209K
<400> SEQUENCE: 268
cttcaggtcc tggctggcag cacgtacgcc
                                                                       30
<210> SEQ ID NO 269
<211> LENGTH: 30
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2306 IEX02 R204A FOR, ONLY for templates
      having D209K
<400> SEQUENCE: 269
                                                                       30
ggcgtacgtg ctgccagcca ggacctgaag
<210> SEQ ID NO 270
<211> LENGTH: 29
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2307 IEX02 R204Q REV, ONLY for templates
     having D209K
<400> SEQUENCE: 270
                                                                       29
cttcaggtcc tggctctgag cacgtacgc
<210> SEQ ID NO 271
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2308 IEX02 R204Q FOR, ONLY for templates
      having D209K
<400> SEOUENCE: 271
gcgtacgtgc tcagagccag gacctgaag
                                                                       29
<210> SEQ ID NO 272
<211> LENGTH: 33
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2309 IEX02 Q161N REV
<400> SEQUENCE: 272
                                                                       33
gttcaacggt ccagttgttg gtgccgcggg tag
<210> SEQ ID NO 273
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2310 IEX02 Q161N FOR
<400> SEQUENCE: 273
ctaccegegg caccaacaac tggaccgttg aac
                                                                       33
<210> SEQ ID NO 274
<211> LENGTH: 33
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
```

```
<223> OTHER INFORMATION: OL 2311 IEX02 Q161T REV
<400> SEQUENCE: 274
gttcaacggt ccagttggtg gtgccgcggg tag
                                                                       33
<210> SEQ ID NO 275
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2312 IEX02 Q161T FOR
<400> SEQUENCE: 275
ctaccegegg caccaccaac tggacegttg aac
                                                                       33
<210> SEQ ID NO 276
<211> LENGTH: 31
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2313 IEX02 T164A REV
<400> SEQUENCE: 276
                                                                       31
cagcagacgt tcaacggccc agttctgggt g
<210> SEQ ID NO 277
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: OL 2314 IEX02 T164A FOR
<400> SEQUENCE: 277
cacccagaac tgggccgttg aacgtctgct g
                                                                       31
<210> SEQ ID NO 278
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2315 IEX02 N162A REV
<400> SEQUENCE: 278
gacgttcaac ggtccaggcc tgggtgccgc ggg
                                                                       33
<210> SEQ ID NO 279
<211> LENGTH: 33
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2316 IEX02 N162A FOR
<400> SEQUENCE: 279
cccgcggcac ccaggcctgg accgttgaac gtc
<210> SEQ ID NO 280
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2318 IEX02 FOR RFB4 (NcoI)
<400> SEQUENCE: 280
attgccacca tggcggaagt gc
                                                                       2.2
```

```
<210> SEQ ID NO 281
<211> LENGTH: 31
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2320 IEX02 REV to create RBF4 for
      RFB4-PE38-8xHis to pair with OL2318
<400> SEQUENCE: 281
caccaggeeg etgettttga tetecagett g
                                                                       31
<210> SEQ ID NO 282
<211> LENGTH: 31
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2321 IEX02 FOR to create RFB4-PE38-8xHis to
      pair with OL2322
<400> SEQUENCE: 282
caagctggag atcaaaagca gcggcctggt g
                                                                       3.1
<210> SEO ID NO 283
<211> LENGTH: 66
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2322 IEX02 REV introducing 8xHis C-terminus
      of PE, introducing XhoI
<400> SEQUENCE: 283
cgattctcga gttacttcag gtcctcgtgg tggtggtgat gatgatgatg acgcggcggt
                                                                       60
                                                                       66
<210> SEQ ID NO 284
<211> LENGTH: 44
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: OL 2323 IEX02 FOR to create RFB4-6xHis PE38
      fusions (pIEX02-302 and pIEX02-304) to pair with OL2161
<400> SEQUENCE: 284
caagetggag atcaaagete atgggggcag ceateateat cate
                                                                       44
<210> SEQ ID NO 285
<211> LENGTH: 44
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: OL 2324 IEX02 REV to create RFB4-6xHis PE38
      fusions (pIEX02-302 and pIEX02-304) to pair with OL2318
<400> SEQUENCE: 285
gatgatgatg atggctgccc ccatgagctt tgatctccag cttg
                                                                       44
<210> SEQ ID NO 286
<211> LENGTH: 13
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Modified Kozak sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
```

-continued

10

```
<222> LOCATION: (7)...(7)
<223> OTHER INFORMATION: r at position 7 is a purine (adenine or guanine)
<400> SEQUENCE: 286
gccgccrcca ugg 13
```

The invention claimed is:

- 1. A polypeptide having at least one *Pseudomonas* exotoxin A (PE-A) biological activity, wherein said polypeptide comprises one or more amino acid substitutions compared to a wild-type PE-A polypeptide, wherein said one or more amino acid substitutions is a substitution of a different amino acid at one or more positions corresponding to amino acid residues in the polypeptide of SEQ ID NO:1, wherein one of said substitutions is selected from the group consisting of:
 - a) arginine (R) at position 146 is substituted with a different basic amino acid;
 - b) arginine (R) at position 146 is substituted with a different polar amino acid residue wherein the substitution at position 146 is not lysine (K) or histidine (H).
- 2. The polypeptide of claim 1, wherein the different polar amino acid substitution for arginine (R) at position 146 is asparagine (N), aspartic acid (D), cysteine (C), glutamic acid (E), glutamine (Q), serine (S), threonine (T) or tyrosine (Y).
- 3. The polypeptide of claim 1, wherein the at least one 30 *Pseudomonas* exotoxin A (PE-A) biological activity comprises the ability to inhibit in vitro transcription/translation compared to a corresponding wild-type or non-substituted PE-A polypeptide, wherein said ability to inhibit in vitro transcription/translation is in an amount selected from the 35 group consisting of:
 - (a) at least 5% inhibition;
 - (b) at least 10% inhibition;
 - (c) at least 15% inhibition;
 - (d) at least 20% inhibition;
 - (e) at least 25% inhibition;
 - (f) at least 30% inhibition;
 - (g) at least 40% inhibition;
 - (h) at least 50% inhibition;
 - (i) at least 60% inhibition;
 - (j) at least 70% inhibition;
 - (k) at least 80% inhibition;
 - (1) at least 90% inhibition;
 - (m) at least 100% inhibition;
 - (n) about 100% inhibition; and
 - (o) 100% inhibition.
- **4**. The polypeptide of claim **1**, wherein said polypeptide comprises one or more amino acid substitutions which prevent or reduce host immunogenic responses compared to the same polypeptide without said one or more amino acid ⁵⁵ substitutions.
- 5. The polypeptide of claim 1, wherein the last five or six amino acids in said polypeptide comprise one or more amino acid sequences selected from the group consisting of:

(i) Arg-Glu-Asp-Leu-Lys;

- (ii) Arg-Glu-Asp-Leu;
- (iii) Lys-Asp-Glu-Leu;
- (iv) Glu-Asp-Leu-Lys; and
- (v) a dimer, trimer, pentamer, hexamer, septamer, or octamer of (i), (ii), or (iii), or any combination thereof.

416

- **6**. The polypeptide of claim **1**, wherein said polypeptide has one or more biological activities selected from the group consisting of:
 - a) eukaryotic cell killing activity (cell cytotoxicity);
 - b) inhibits translation elongation factor EF-2 biological activity:
 - c) induces or catalyzes ADP-ribosylation of EF-2; and
 - d) inhibits protein synthesis.
- 7. The polypeptide of claim 1, wherein said one or more amino acid substitutions reduce host immunogenic responses compared to a polypeptide comprising an amino acid sequence selected from the group consisting of:
 - (a) SEQ ID NO:1;
 - (b) SEQ ID NO:4;
 - (c) SEQ ID NO:133; and
 - (d) SEQ ID NO:134.
- 8. The polypeptide of claim 1, wherein said polypeptide is a fusion protein.
- 9. A polynucleotide encoding the polypeptide of claim 1.
- 10. An expression vector comprising the polynucleotide of claim 9.
- 11. A host cell comprising the expression vector of claim
- 12. A polynucleotide encoding the fusion protein of claim $_{40}$ 8.
 - 13. The polypeptide of claim 1, wherein said polypeptide is a fusion protein.
 - 14. The polypeptide of claim 2, wherein said polypeptide is a fusion protein.
 - 15. A polynucleotide encoding the polypeptide of claim 1.
 - 16. A polynucleotide encoding the polypeptide of claim 2.
 - 17. A polynucleotide encoding the fusion protein of claim 3.
 - **18**. A polynucleotide encoding the fusion protein of claim **14**.
 - 19. An expression vector comprising the polynucleotide of claim 15.
 - 20. An expression vector comprising the polynucleotide of claim 16.
 - 21. A host cell comprising the expression vector of claim 19.
 - 22. A host cell comprising the expression vector of claim 20.

* * * * *